ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconstruction of high-energy part of gamma-ray spectrum in thermal neutron capture by $^{113}$Cd

167   0   0.0 ( 0 )
 نشر من قبل Oleksandr Gorbachenko
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Average gamma-ray spectrum from $^{114}$Cd after thermal neutron capture in $^{113}$Cd was evaluated in units of mb/MeV. Two approaches are considered for estimation of average gamma-ray spectrum with normalization of the experimental data: mean spectra for all gamma-energies were found by averaging frequency polygon for experimental data histogram, and mean spectra were estimated as combination of theoretical values at low gamma-ray energies and averaging experimental data in high-energy range. The experimental spectra were evaluated from the gamma-intensities given by Mheemeed et al [A. Mheemeed et al., Nucl. Phys. A 412 (1984) 113] and Belgya et al [T. Belgya et al., EPJ Web Of Conf. 146 (2017) 05009]. They were normalized to average theoretical spectrum which were calculated by EMPIRE and TALYS codes with default input parameters. Procedure of normalization of high-energy part of the spectrum was described. As for now, the most reliable estimated $gamma$- spectrum for $^{113}$Cd(n,{x$gamma$}) reaction induced by thermal neutrons was presented.



قيم البحث

اقرأ أيضاً

We have measured the $gamma$-ray energy spectrum from the thermal neutron capture, ${}^{157}$Gd$(n,gamma){}^{158}$Gd, on an enriched $^{157}$Gd target (Gd$_{2}$O$_{3}$) in the energy range from 0.11 MeV up to about 8 MeV. The target was placed inside the germanium spectrometer of the ANNRI detector at J-PARC and exposed to a neutron beam from the Japan Spallation Neutron Source (JSNS). Radioactive sources ($^{60}$Co, $^{137}$Cs, and $^{152}$Eu) and the reaction $^{35}$Cl($n$,$gamma$) were used to determine the spectrometers detection efficiency for $gamma$ rays at energies from 0.3 to 8.5 MeV. Using a Geant4-based Monte Carlo simulation of the detector and based on our data, we have developed a model to describe the $gamma$-ray spectrum from the thermal ${}^{157}$Gd($n$,$gamma$) reaction. While we include the strength information of 15 prominent peaks above 5 MeV and associated peaks below 1.6 MeV from our data directly into the model, we rely on the theoretical inputs of nuclear level density and the photon strength function of ${}^{158}$Gd to describe the continuum $gamma$-ray spectrum from the ${}^{157}$Gd($n$,$gamma$) reaction. Our model combines these two components. The results of the comparison between the observed $gamma$-ray spectra from the reaction and the model are reported in detail.
Natural gadolinium is widely used for its excellent thermal neutron capture cross section, because of its two major isotopes: $^{rm 155}$Gd and $^{rm 157}$Gd. We measured the $gamma$-ray spectra produced from the thermal neutron capture on targets co mprising a natural gadolinium film and enriched $^{rm 155}$Gd (in Gd$_{2}$O$_{3}$ powder) in the energy range from 0.11 MeV to 8.0 MeV, using the ANNRI germanium spectrometer at MLF, J-PARC. The freshly analysed data of the $^{rm 155}$Gd(n, $gamma$) reaction are used to improve our previously developed model (ANNRI-Gd model) for the $^{rm 157}$Gd(n, $gamma$) reaction, and its performance confirmed with the independent data from the $^{rm nat}$Gd(n, $gamma$) reaction. This article completes the development of an efficient Monte Carlo model required to simulate and analyse particle interactions involving the thermal neutron captures on gadolinium in any relevant future experiments.
The fusion and transfer induced fission reaction $^{9}$Be($^{238}$U,~f) with 6.2 MeV/u beam energy, using a unique setup consisting of AGATA, VAMOS++ and EXOGAM detectors, was used to populate through the fission process and study the neutron-rich $^ {119,121}$In isotopes. This setup enabled the prompt-delayed $gamma$-ray spectroscopy of isotopes in the time range of $100~rm{ns} - 200~murm{s}$. In the odd-$A$ $^{119,121}$In isotopes, indications of a short half-life $19/2^{-}$ isomeric state, in addition to the previously known $25/2^{+}$ isomeric state, were observed from the present data. Further, new prompt transitions above the $25/2^{+}$ isomer in $^{121}$In were identified along with reevaluation of its half-life. The experimental data were compared with the theoretical results obtained in the framework of large-scale shell-model calculations in a restricted model space. The $langle pi g_{9/2} u h_{11/2};I arrowvert hat{mathcal{H}}arrowvert pi g_{9/2} u h_{11/2};Irangle$ two-body matrix elements of residual interaction were modified to explain the excitation energies and the $B(E2)$ transition probabilities in the neutron-rich In isotopes. The (i) decreasing trend of $E(29/2^{+}) - E(25/2^{+})$ in odd-In (with dominant configuration $pi g_{9/2}^{-1} u h_{11/2}^{-2}$ and maximum aligned spin of $29/2^{+}$) and (ii) increasing trend of $E(27/2^{+}) - E(23/2^{+})$ in odd-Sb (with dominant configuration $pi g_{7/2}^{+1} u h_{11/2}^{-2}$ and maximum aligned spin of $27/2^{+}$) with increasing neutron number could be understood as a consequence of hole-hole and particle-hole interactions, respectively.
The emission of neutrons and gamma rays by fission fragments reveal important information about the properties of fragments immediately following scission. The initial fragment properties, correlations between fragments, and emission competition give rise to correlations in neutron-gamma emission. Neutron-gamma correlations are important in nonproliferation applications because the characterization of fissionable samples relies on the identification of signatures in the measured radiation. Furthermore, recent theoretical and experimental advances have proposed to explain the mechanism of angular momentum generation in fission. In this paper, we present a novel analysis method of neutrons and gamma rays emitted by fission fragments that allows us to discern structure in the observed correlations. We have analyzed data collected on ce{^{252}Cf}(sf) at the Chi-Nu array at the Los Alamos Neutron Science Center. Through our analysis of the energy-differential neutron-gamma multiplicity covariance, we have observed enhanced neutron-gamma correlations, corresponding to rotational band gamma-ray transitions, at gamma-ray energies of $0.7$ and $1.2$ MeV. To shed light on the origin of this structure, we compare the experimental data with the predictions of three model calculations. The origin of the observed correlation structure is understood in terms of a positive spin-energy correlation in the generation of angular momentum in fission.
The Department of Nuclear Engineering, University of California Berkeley built a D-D neutron generator called the High Flux Neutron Generator (HFNG). It operates in the range of 100-125 keV of accelerating voltage. The generator produces neutron curr ent of about 10^8 per second. These neutrons have energies between 2.2-2.8 MeV. We report here the results of a measurement of the scattered vs unscattered neutron fluence on polyethylene determined via neutron activation of multiple natural indium foils from a D-D neutron generator. Both the angle-integrated spectrum and the angle differential results are consistent with the predictions of the Monte Carlo N-Particle Transport (MCNP) code, using the ENDF/B-VII.1. This supports shielding calculations in the fast energy region with high density polyethylene (HDPE). To the best of our knowledge no integral benchmark experiment has been performed on polyethylene using D(D,n)alpha neutron spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا