ﻻ يوجد ملخص باللغة العربية
Multi-loop scattering amplitudes constitute a serious bottleneck in current high-energy physics computations. Obtaining new integrand level representations with smooth behaviour is crucial for solving this issue, and surpassing the precision frontier. In this talk, we describe a new technology to rewrite multi-loop Feynman integrands in such a way that non-physical singularities are avoided. The method is inspired by the Loop-Tree Duality (LTD) theorem, and uses geometrical concepts to derive the causal structure of any multi-loop multi-leg scattering amplitude. This representation makes the integrand much more stable, allowing faster numerical simulations, and opens the path for novel re-interpretations of higher-order corrections in QFT.
I will present a new method for thinking about and for computing loop integrals based on differential equations. All required information is obtained by algebraic means and is encoded in a small set of simple quantities that I will describe. I will p
The stability and causality of the Landau-Lifshitz theory and the Israel-Stewart type causal dissipative hydrodynamics are discussed. We show that the problem of acausality and instability are correlated in relativistic dissipative hydrodynamics and
We point out that supersymmetric warped geometry can provide a solution to the SUSY flavor problem, while generating hierarchical Yukawa couplings. In supersymmetric theories in a slice of AdS_5 with the Kaluza-Klein scale M_KK much higher than the w
We use the worldline formalism to derive integral representations for three classes of amplitudes in scalar field theory: (i) the scalar propagator exchanging N momenta with a scalar background field (ii) the half-ladder with N rungs in x - space (ii
We present the first comprehensive analysis of the unitarity thresholds and anomalous thresholds of scattering amplitudes at two loops and beyond based on the loop-tree duality, and show how non-causal unphysical thresholds are locally cancelled in a