ﻻ يوجد ملخص باللغة العربية
This paper is concerned with a linear quadratic optimal control for a class of singular Volterra integral equations. Under proper convexity conditions, optimal control uniquely exists, and it could be characterized via Frechet derivative of the quadratic functional in a Hilbert space or via maximum principle type necessary conditions. However, these (equivalent) characterizations have a shortcoming that the current value of the optimal control depends on the future values of the optimal state. Practically, this is not feasible. The main purpose of this paper is to obtain a causal state feedback representation of the optimal control.
We study linear-quadratic optimal control problems for Voterra systems, and problems that are linear-quadratic in the control but generally nonlinear in the state. In the case of linear-quadratic Volterra control, we obtain sharp necessary and suffic
We establish existence and uniqueness for infinite dimensional Riccati equations taking values in the Banach space L 1 ($mu$ $otimes$ $mu$) for certain signed matrix measures $mu$ which are not necessarily finite. Such equations can be seen as the in
We provide an exhaustive treatment of Linear-Quadratic control problems for a class of stochastic Volterra equations of convolution type, whose kernels are Laplace transforms of certain signed matrix measures which are not necessarily finite. These e
This paper is concerned with a backward stochastic linear-quadratic (LQ, for short) optimal control problem with deterministic coefficients. The weighting matrices are allowed to be indefinite, and cross-product terms in the control and state process
Weakly singular Volterra integral equations of the different types are considered. The construction of accuracy-optimal numerical methods for one-dimensional and multidimensional equations is discussed. Since this question is closely related with the