ﻻ يوجد ملخص باللغة العربية
In this work, we investigate the long-time asymptotic behavior of the Wadati-Konno-Ichikawa equation with initial data belonging to Schwartz space at infinity by using the nonlinear steepest descent method of Deift and Zhou for the oscillatory Riemann-Hilbert problem. Based on the initial value condition, the original Riemann-Hilbert problem is constructed to express the solution of the Wadati-Konno-Ichikawa equation. Through a series of deformations, the original RH problem is transformed into a model RH problem, from which the long-time asymptotic solution of the equation is obtained explicitly.
In this work, we employ the $bar{partial}$-steepest descent method to investigate the Cauchy problem of the Wadati-Konno-Ichikawa (WKI) equation with initial conditions in weighted Sobolev space $mathcal{H}(mathbb{R})$. The long time asymptotic behav
In this work, we investigate the Cauchy problem of the Wadati-Konno-Ichikawa (WKI) equation with finite density initial data. Employing the $bar{partial}$-generalization of Deift-Zhou nonlinear steepest descent method, we derive the long time asympto
The purpose of this article is to give a streamlined and self-contained treatment of the long-time asymptotics of the Toda lattice for decaying initial data in the soliton and in the similarity region via the method of nonlinear steepest descent.
We investigate the long time asymptotics for the Cauchy problem of the defocusing modified Kortweg-de Vries (mKdV) equation with finite density initial data in different solitonic regions begin{align*} &q_t(x,t)-6q^2(x,t)q_{x}(x,t)+q_{xxx}(x,t)=0,
We apply the method of nonlinear steepest descent to compute the long-time asymptotics of the Toda lattice for decaying initial data in the soliton region. In addition, we point out how to reduce the problem in the remaining region to the known case without solitons.