ﻻ يوجد ملخص باللغة العربية
Density-functional theory is widely used to predict the physical properties of materials. However, it usually fails for strongly correlated materials. A popular solution is to use the Hubbard corrections to treat strongly correlated electronic states. Unfortunately, the exact values of the Hubbard $U$ and $J$ parameters are initially unknown, and they can vary from one material to another. In this semi-empirical study, we explore the $U$ and $J$ parameter space of a group of iron-based compounds to simultaneously improve the prediction of physical properties (volume, magnetic moment, and bandgap). We used a Bayesian calibration assisted by Markov chain Monte Carlo sampling for three different exchange-correlation functionals (LDA, PBE, and PBEsol). We found that LDA requires the largest $U$ correction. PBE has the smallest standard deviation and its $U$ and $J$ parameters are the most transferable to other iron-based compounds. Lastly, PBE predicts lattice parameters reasonably well without the Hubbard correction.
We present the Solar Bayesian Analysis Toolkit (SoBAT) which is a new easy to use tool for Bayesian analysis of observational data, including parameter inference and model comparison. SoBAT is aimed (but not limited) to be used for the analysis of so
This work discusses the implementation of Markov Chain Monte Carlo (MCMC) sampling from an arbitrary Gaussian mixture model (GMM) within SRAM. We show a novel architecture of SRAM by embedding it with random number generators (RNGs), digital-to-analo
We introduce a fast Markov Chain Monte Carlo (MCMC) exploration of the astrophysical parameter space using a modified version of the publicly available code CIGALE (Code Investigating GALaxy emission). The original CIGALE builds a grid of theoretical
We propose a minimal generalization of the celebrated Markov-Chain Monte Carlo algorithm which allows for an arbitrary number of configurations to be visited at every Monte Carlo step. This is advantageous when a parallel computing machine is availab
Boson sampling is a promising candidate for quantum supremacy. It requires to sample from a complicated distribution, and is trusted to be intractable on classical computers. Among the various classical sampling methods, the Markov chain Monte Carlo