ﻻ يوجد ملخص باللغة العربية
This paper introduces a motion retargeting method that preserves self-contacts and prevents interpenetration. Self-contacts, such as when hands touch each other or the torso or the head, are important attributes of human body language and dynamics, yet existing methods do not model or preserve these contacts. Likewise, interpenetration, such as a hand passing into the torso, are a typical artifact of motion estimation methods. The input to our method is a human motion sequence and a target skeleton and character geometry. The method identifies self-contacts and ground contacts in the input motion, and optimizes the motion to apply to the output skeleton, while preserving these contacts and reducing interpenetration. We introduce a novel geometry-conditioned recurrent network with an encoder-space optimization strategy that achieves efficient retargeting while satisfying contact constraints. In experiments, our results quantitatively outperform previous methods and we conduct a user study where our retargeted motions are rated as higher-quality than those produced by recent works. We also show our method generalizes to motion estimated from human videos where we improve over previous works that produce noticeable interpenetration.
We present a text-based tool for editing talking-head video that enables an iterative editing workflow. On each iteration users can edit the wording of the speech, further refine mouth motions if necessary to reduce artifacts and manipulate non-verba
Facial expression retargeting from humans to virtual characters is a useful technique in computer graphics and animation. Traditional methods use markers or blendshapes to construct a mapping between the human and avatar faces. However, these approac
Human motion retargeting aims to transfer the motion of one person in a driving video or set of images to another person. Existing efforts leverage a long training video from each target person to train a subject-specific motion transfer model. Howev
Human hand actions are quite complex, especially when they involve object manipulation, mainly due to the high dimensionality of the hand and the vast action space that entails. Imitating those actions with dexterous hand models involves different im
The task of unsupervised motion retargeting in videos has seen substantial advancements through the use of deep neural networks. While early works concentrated on specific object priors such as a human face or body, recent work considered the unsuper