ترغب بنشر مسار تعليمي؟ اضغط هنا

Remarks on the preservation and breaking of translational symmetry for a class of ODEs

121   0   0.0 ( 0 )
 نشر من قبل Edward Huynh
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we provide both a preservation and breaking of symmetry theorem for $2pi$-periodic problems of the form begin{align*} begin{cases} -u(t) + g(u(t)) = f(t)cr u(0) - u(2pi) = u(0) - u(2pi) = 0 end{cases} end{align*} where $g: mathbb{R} to mathbb{R}$ is a given $C^1$ function and $f: [0,2pi] to mathbb{R}$ is continuous. We provide a preservation of symmetry result that is analogous to one given by Willem (Willem, 1989) and a generalization of the theorem given by Costa-Fang (Costa and Fang, 2019). Both of these theorems use group actions that are not normally considered in the literature.

قيم البحث

اقرأ أيضاً

In this paper we use a unified way studying the decay estimate for a class of dispersive semigroup given by $e^{itphi(sqrt{-Delta})}$, where $phi: mathbb{R}^+to mathbb{R}$ is smooth away from the origin. Especially, the decay estimates for the soluti ons of the Klein-Gordon equation and the beam equation are simplified and slightly improved.
The main purpose of this paper is to establish the existence, nonexistence and symmetry of nontrivial solutions to the higher order Brezis-Nirenberg problems associated with the GJMS operators $P_k$ on bounded domains in the hyperbolic space $mathbb{ H}^n$ and as well as on the entire hyperbolic space $mathbb{H}^n$. Among other techniques, one of our main novelties is to use crucially the Helgason-Fourier analysis on hyperbolic spaces and the higher order Hardy-Sobolev-Mazya inequalities and careful study of delicate properties of Greens functions of $P_k-lambda$ on hyperbolic spaces which are of independent interests in dealing with such problems. Such Greens functions allow us to obtain the integral representations of solutions and thus to avoid using the maximum principle to establish the symmetry of solutions.
A class of covariant gauges allowing one to interpolate between the Landau, the maximal Abelian, the linear covariant and the Curci-Ferrari gauges is discussed. Multiplicative renormalizability is proven to all orders by means of algebraic renormaliz ation. All one-loop anomalous dimensions of the fields and gauge parameters are explicitly evaluated in the MSbar scheme.
105 - Adela N. Comanici 2005
We consider a small SO(2)-equivariant perturbation of a reaction-diffusion system on the sphere, which is equivariant with respect to the group SO(3) of all rigid rotations. We consider a normally hyperbolic SO(3)-group orbit of a rotating wave on th e sphere that persists to a normally hyperbolic SO(2)-invariant manifold $M(epsilon)$. We investigate the effects of this forced symmetry breaking by studying the perturbed dynamics induced on $M(epsilon)$ by the above reaction-diffusion system. We prove that depending on the frequency vectors of the rotating waves that form the relative equilibrium SO(3)u_{0}, these rotating waves will give SO(2)-orbits of rotating waves or SO(2)-orbits of modulated rotating waves (if some transversality conditions hold). The orbital stability of these solutions is established as well. Our main tools are the orbit space reduction, Poincare map and implicit function theorem.
74 - Pascal Auscher 2021
In these notes we will present (a part of) the parabolic tent spaces theory and then apply it in solving some PDEs originated from the fluid mechanics. In more details, to our most interest are the incompressible homogeneous Navier-Stokes equations. These equations have been investigated mathematically for almost one century. Yet, the question of proving well-posedness (i.e. existence, uniqueness and regularity of solutions) lacks satisfactory answer. A large part of the known positive results in connection with Navier-Stokes equations are those in which the initial data $u_0$ is supposed to have a small norm in some critical or scaling invariant functional space. All those spaces are embedded in the homogeneous Besov space $dot B^{-1}_{infty,infty}$. A breakthrough was made in the paper [16] by Koch and Tataru, where the authors showed the existence and the uniqueness of solutions to the Navier-Stokes system in case when the norm $|u_0|_{mathrm{BMO}^{-1}}$ is small enough. The principal goal of these notes is to present a new proof of the theorem by Koch and Tataru on the Navier-Stokes system, namely the one using the tent spaces theory. We also hope that after having read these notes, the reader will be convinced that the theory of tent spaces is highly likely to be useful in the study of other equations in fluid mechanics. These notes are mainly based on the content of the article [1] by P. Auscher and D. Frey. However, in [1] the authors deal with a slightly more general system of parabolic equations of Navier-Stokes type. Here we have chosen to write down a self-contained text treating only the relatively easier case of the classical incompressible homogeneous Navier-Stokes equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا