ترغب بنشر مسار تعليمي؟ اضغط هنا

High-throughput volumetric adaptive optical imaging using compressed time-reversal matrix

252   0   0.0 ( 0 )
 نشر من قبل Seokchan Yoon
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep-tissue optical imaging suffers from the reduction of resolving power due to tissue-induced optical aberrations and multiple scattering noise. Reflection matrix approaches recording the maps of backscattered waves for all the possible orthogonal input channels have provided formidable solutions for removing severe aberrations and recovering the ideal diffraction-limited spatial resolution without relying on fluorescence labeling and guide stars. However, measuring the full input-output response of the tissue specimen is time-consuming, making the real-time image acquisition difficult. Here, we present the use of a time-reversal matrix, instead of the reflection matrix, for fast high-resolution volumetric imaging of a mouse brain. The time-reversal matrix reduces two-way problem to one-way problem, which effectively relieves the requirement for the coverage of input channels. Using a newly developed aberration correction algorithm designed for the time-reversal matrix, we demonstrated the correction of complex aberrations using as small as 2 % of the complete basis while maintaining the image reconstruction fidelity comparable to the fully sampled reflection matrix. Due to nearly 100-fold reduction in the matrix recording time, we could achieve real-time aberration-correction imaging for a field of view of 40 x 40 microns (176 x 176 pixels) at a frame rate of 80 Hz. Furthermore, we demonstrated high-throughput volumetric adaptive optical imaging of a mouse brain by recording a volume of 128 x 128 x 125 microns (568 x 568 x 125 voxels) in 3.58 s, correcting tissue aberrations at each and every 1-micron depth section, and visualizing myelinated axons with a lateral resolution of 0.45 microns and an axial resolution of 2 microns.

قيم البحث

اقرأ أيضاً

An ultrafast single-pixel optical 2D imaging system using a single multimode fiber (MF) is proposed. The MF acted as the all-optical random pattern generator. Light with different wavelengths pass through a single MF will generator all-optical random speckle patterns, which have a low correlation of 0.074 with 0.1nm wavelength step from 1518.0nm to 1567.9nm. The all-optical random speckle patterns are perfect for compressive sensing (CS) imaging with the advantage of low cost in comparison with the conventional expensive pseudorandom binary sequence (PRBS). Besides, with the employment of photonic time stretch (PTS), light of different wavelengths will go through a single capsuled MF in time serial within a short pulse time, which makes ultrafast single-pixel all-optical CS imaging possible. In our work, the all-optical random speckle patterns are analyzed and used to perform CS imaging in our proposed system and the results shows a single-pixel photo-detector can be employed in CS imaging system and a 27 by 27 pixels image is reconstructed within 500 measurements. In our proposed imaging system, the fast Fourier transform (FFT) spatial resolution, which is a combination of multiple Gaussians, is analyzed. Considering 4 optical speckle patterns, the FFT spatial resolution is 50 by 50 pixels. This resolution limit has been obtained by removing the central low frequency components and observing the significant spectral power along all the radial directions.
We report optical brain imaging using a semi-transparent organic light-emitting diode (OLED) based on the orange light-emitting polymer (LEP) Livilux PDO-124. The OLED serves as a compact, extended light source which is capable of uniformly illuminat ing the cortical surface when placed across a burr hole in the skull. Since all layers of the OLED are substantially transparent to photons with energies below the optical gap of the LEP, light emitted or reflected by the cortical surface may be efficiently transmitted through the OLED and into the objective lens of a low magnification microscope (macroscope). The OLED may be placed close to the cortical surface, providing efficient coupling of incident light into the brain cavity; furthermore, the macroscope may be placed close to the upper surface of the OLED, enabling efficient collection of reflected/emitted light from the cortical surface. Hence the use of a semi-transparent OLED simplifies the optical setup, while at the same time maintaining high sensitivity. The OLED is applied here to one of the most demanding forms of optical brain imaging, namely extrinsic optical imaging involving a voltage sensitive dye (VSD). Specifically, we carry out functional imaging of the primary visual cortex (V1) of a rat, using the voltage sensitive dye RH-1691 as a reporter. Imaging through the OLED light-source, we are able to resolve small (~ 0.1 %) changes in the fluorescence intensity of the dye due to changes in the neuronal membrane potential following a visual stimulus. Results are obtained on a single trial basis -- i.e. without averaging over multiple measurements -- with a time-resolution of ten milliseconds.
Diffraction unlimited super-resolution imaging critically depends on the switching of fluorophores between at least two states, often induced using intense laser light and special buffers. The high illumination power or UV light required for appropri ate blinking kinetics is currently hindering live-cell experiments. Recently, so-called self-blinking dyes that switch spontaneously between an open, fluorescent on-state and a closed colorless off-state were introduced. Here we exploit the synergy between super-resolution optical fluctuation imaging (SOFI) and spontaneously switching fluorophores for 2D functional and for volumetric imaging. SOFI tolerates high labeling densities, on-time ratios, and low signal-to-noise by analyzing higher-order statistics of a few hundred to thousand frames of stochastically blinking fluorophores. We demonstrate 2D imaging of fixed cells with a uniform resolution up to 50-60 nm in 6th order SOFI and characterize changing experimental conditions. We extend multiplane cross-correlation analysis to 4th order using biplane and 8-plane volumetric imaging achieving up to 29 (virtual) planes. The low laser excitation intensities needed for self-blinking SOFI are ideal for live-cell imaging. We show proof-of-principal time-resolved imaging by observing slow membrane movements in cells. Self-blinking SOFI provides a route for easy-to-use 2D and 3D high-resolution functional imaging that is robust against artefacts and suitable for live-cell imaging.
The interaction of a cavity with an external field is symmetric under time reversal. Thus, coupling to a resonator is most efficient when the incident light is the time reversed version of a free cavity decay, i.e. when it has a rising exponential sh ape matching the cavity lifetime. For light entering the cavity from only one side, the maximally achievable coupling efficiency is limited by the choice of the cavity mirrors reflectivities. Such an empty-cavity experiment serves also as a model system for single-photon single-atom absorption dynamics. We present experiments coupling exponentially rising pulses to a cavity system which allows for high coupling efficiencies. The influence of the time constant of the rising exponential is investigated as well as the effect of a finite pulse duration. We demonstrate coupling 94% of the incident TEM00 mode into the resonator.
The utilization of time reversal symmetry in designing and implementing (quantum) optical experiments has become more and more frequent over the past years. We review the basic idea underlying time reversal methods, illustrate it with several examples and discuss a number of implications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا