ﻻ يوجد ملخص باللغة العربية
Message exchange among vehicles plays an important role in ensuring road safety. Emergency message dissemination is usually carried out by broadcasting. However, high vehicle density and mobility usually lead to challenges in message dissemination such as broadcasting storm and low probability of packet reception. This paper proposes a federated learning based blockchain-assisted message dissemination solution. Similar to the incentive-based Proof-of-Work consensus in blockchain, vehicles compete to become a relay node (miner) by processing the proposed Proof-of-Federated-Learning (PoFL) consensus which is embedded in the smart contract of blockchain. Both theoretical and practical analysis of the proposed solution are provided. Specifically, the proposed blockchain based federated learning results in more number of vehicles uploading their models in a given time, which can potentially lead to a more accurate model in less time as compared to the same solution without using blockchain. It also outperforms the other blockchain approaches for message dissemination by reducing 65.2% of time delay in consensus, improving at least 8.2% message delivery rate and preserving privacy of neighbor vehicle more efficiently. The economic model to incentivize vehicles participating in federated learning and message dissemination is further analyzed using Stackelberg game model.
Secure message dissemination is an important issue in vehicular networks, especially considering the vulnerability of vehicle to vehicle message dissemination to malicious attacks. Traditional security mechanisms, largely based on message encryption
Information security is an important issue in vehicular networks as the accuracy and integrity of information is a prerequisite to satisfactory performance of almost all vehicular network applications. In this paper, we study the information security
With geographic message dissemination, connected vehicles can be served with traffic information in their proximity, thereby positively impacting road safety, traffic management, or routing. Since such messages are typically relevant in a small geogr
The Controller Area Network (CAN) bus works as an important protocol in the real-time In-Vehicle Network (IVN) systems for its simple, suitable, and robust architecture. The risk of IVN devices has still been insecure and vulnerable due to the comple
As the commercial use of 5G technologies has grown more prevalent, smart vehicles have become an efficient platform for delivering a wide array of services directly to customers. The vehicular crowdsourcing service (VCS), for example, can provide imm