ترغب بنشر مسار تعليمي؟ اضغط هنا

$A=4-7$ $Xi$ hypernuclei based on interactions from chiral effective field theory

90   0   0.0 ( 0 )
 نشر من قبل Hoai Le
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the existence of bound $Xi$ break states in systems with $A=4-7$ baryons using the Jacobi NCSM approach in combination with chiral NN and $Xi$N interactions. We find three shallow bound states for the NNN$Xi$ system (with $(J^pi,T)=(1^+,0)$, $(0^+,1)$ and $(1^+,1)$) with quite similar binding energies. The $^5_{Xi}mathrm{H}(frac{1}{2}^+,frac{1}{2})$ and $^7_{Xi}mathrm{H}(frac{1}{2}^+,frac{3}{2})$ hypernuclei are also clearly bound with respect to the thresholds $^4mathrm{He} + Xi$ and $^6mathrm{He} +Xi$, respectively. The binding of all these $Xi$ systems is predominantly due to the attraction of the chiral $Xi$N potential in the $^{33}S_1$ channel. A perturbative estimation suggests that the decay widths of all the observed states could be rather small.



قيم البحث

اقرأ أيضاً

We show that microscopic calculations based on chiral effective field theory interactions constrain the properties of neutron-rich matter below nuclear densities to a much higher degree than is reflected in commonly used equations of state. Combined with observed neutron star masses, our results lead to a radius R = 9.7 - 13.9 km for a 1.4 M_{solar} star, where the theoretical range is due, in about equal amounts, to uncertainties in many-body forces and to the extrapolation to high densities.
We generalize the Jacobi no-core shell model (J-NCSM) to study double-strangeness hypernuclei. All particle
Since the pioneering work of Weinberg, Chiral Effective Field Theory ($chi$EFT) has been widely and successfully utilized in nuclear physics to study many-nucleon interactions and associated electroweak currents. Nuclear $chi$EFT has now developed in to an intense field of research and is applied to study light to medium mass nuclei. In this contribution, we focus on the development of electroweak currents from $chi$EFT and present applications to selected nuclear electroweak observables.
New effective $Lambda N$ interactions are proposed for the density dependent relativistic mean field model. The multidimensionally constrained relativistic mean field model is used to calculate ground state properties of eleven known $Lambda$ hypernu clei with $Age 12$ and the corresponding core nuclei. Based on effective $NN$ interactions DD-ME2 and PKDD, the ratios $R_sigma$ and $R_omega$ of scalar and vector coupling constants between $Lambda N$ and $NN$ interactions are determined by fitting calculated $Lambda$ separation energies to experimental values. We propose six new effective interactions for $Lambda$ hypernuclei: DD-ME2-Y1, DD-ME2-Y2, DD-ME2-Y3, PKDD-Y1, PKDD-Y2 and PKDD-Y3 with three ways of grouping and including these eleven hypernuclei in the fitting. It is found that the two ratios $R_sigma$ and $R_omega$ are correlated well and there holds a good linear relation between them. The statistical errors of the ratio parameters in these effective interactions are analyzed. These new effective interactions are used to study the equation of state of hypernuclear matter and neutron star properties with hyperons.
The density and temperature dependence of the nuclear symmetry free energy is investigated using microscopic two- and three-body nuclear potentials constructed from chiral effective field theory. The nuclear force models and many-body methods are ben chmarked to properties of isospin-symmetric nuclear matter in the vicinity of the saturation density as well as the virial expansion of the neutron matter equation of state at low fugacities. The free energy per particle of isospin-asymmetric nuclear matter is calculated assuming a quadratic dependence of the interaction contributions on the isospin asymmetry. The spinodal instability at subnuclear densities is examined in detail.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا