ﻻ يوجد ملخص باللغة العربية
The concept of energetic particle reservoirs, essentially based on the assumption of the presence of outer reflecting boundaries/magnetic mirrors or diffusion barriers (deterministic) rather than on the effect of particle diffusive propagation (stochastic) in magnetic turbulence, has been used for decades to describe the space-extended decay phases of energetic particle events within the fields of space physics, solar physics, and plasma physics. Using five-dimensional time-dependent Fokker-Planck transport equation simulations, in this work we demonstrate that the so-called particle reservoirs are naturally explained and quantitatively reproduced by diffusion processes in turbulent magnetic fields, without invoking the hypothesis of reflecting boundaries. Our results strongly suggest that the so-called reservoir (based on deterministic structure) should be renamed flood (based on stochastic diffusion), which symbolizes an authentic shift in thinking and in pragmatic rationale for the studies of energetic particles and relevant plasma phenomena in heliophysics and in astrophysics.
It is shown that ions can be accelerated to MeV energy range in the direction perpendicular to the magnetic field by the ExB mechanism of electrostatic waves. The acceleration occurs in discrete steps of duration being a small fraction the gyroperiod
Solar Orbiter strives to unveil how the Sun controls and shapes the heliosphere and fills it with energetic particle radiation. To this end, its Energetic Particle Detector (EPD) has now been in operation, providing excellent data, for just over a ye
We use 3D fully kinetic particle-in-cell simulations to study the occurrence of magnetic reconnection in a simulation of decaying turbulence created by anisotropic counter-propagating low-frequency Alfven waves consistent with critical-balance theory
A large amount of magnetized plasma is frequently ejected from the Sun as coronal mass ejections (CMEs). Some of these ejections are detected in the solar wind as magnetic clouds (MCs) that have flux rope signatures. Magnetic clouds are structures th
An interval of exceptional solar activity was registered in early September 2017, late in the decay phase of solar cycle 24, involving the complex Active Region 12673 as it rotated across the western hemisphere with respect to Earth. A large number o