ﻻ يوجد ملخص باللغة العربية
A population-averaged additive subdistribution hazard model is proposed to assess the marginal effects of covariates on the cumulative incidence function to analyze correlated failure time data subject to competing risks. This approach extends the population-averaged additive hazard model by accommodating potentially dependent censoring due to competing events other than the event of interest. Assuming an independent working correlation structure, an estimating equations approach is considered to estimate the regression coefficients and a sandwich variance estimator is proposed. The sandwich variance estimator accounts for both the correlations between failure times as well as the those between the censoring times, and is robust to misspecification of the unknown dependency structure within each cluster. We further develop goodness-of-fit tests to assess the adequacy of the additive structure of the subdistribution hazard for each covariate, as well as for the overall model. Simulation studies are carried out to investigate the performance of the proposed methods in finite samples; and we illustrate our methods by analyzing the STrategies to Reduce Injuries and Develop confidence in Elders (STRIDE) study.
Many time-to-event studies are complicated by the presence of competing risks. Such data are often analyzed using Cox models for the cause specific hazard function or Fine-Gray models for the subdistribution hazard. In practice regression relationshi
Observational longitudinal data on treatments and covariates are increasingly used to investigate treatment effects, but are often subject to time-dependent confounding. Marginal structural models (MSMs), estimated using inverse probability of treatm
Most clinical trials involve the comparison of a new treatment to a control arm (e.g., the standard of care) and the estimation of a treatment effect. External data, including historical clinical trial data and real-world observational data, are comm
We develop a Bayesian sum-of-trees model where each tree is constrained by a regularization prior to be a weak learner, and fitting and inference are accomplished via an iterative Bayesian backfitting MCMC algorithm that generates samples from a post
We apply Gaussian process (GP) regression, which provides a powerful non-parametric probabilistic method of relating inputs to outputs, to survival data consisting of time-to-event and covariate measurements. In this context, the covariates are regar