ﻻ يوجد ملخص باللغة العربية
We apply the generalized conditional gradient algorithm to potential mean field games and we show its well-posedeness. It turns out that this method can be interpreted as a learning method called fictitious play. More precisely, each step of the generalized conditional gradient method amounts to compute the best-response of the representative agent, for a predicted value of the coupling terms of the game. We show that for the learning sequence $delta_k = 2/(k+2)$, the potential cost converges in $O(1/k)$, the exploitability and the variables of the problem (distribution, congestion, price, value function and control terms) converge in $O(1/sqrt{k})$, for specific norms.
We propose and investigate a general class of discrete time and finite state space mean field game (MFG) problems with potential structure. Our model incorporates interactions through a congestion term and a price variable. It also allows hard constr
We study in this paper three aspects of Mean Field Games. The first one is the case when the dynamics of each player depend on the strategies of the other players. The second one concerns the modeling of noise in discrete space models and the formu
We study first order evolutive Mean Field Games where the Hamiltonian is non-coercive. This situation occurs, for instance, when some directions are forbidden to the generic player at some points. We establish the existence of a weak solution of the
In this note we prove the uniqueness of solutions to a class of Mean Field Games systems subject to possibly degenerate individual noise. Our results hold true for arbitrary long time horizons and for general non-separable Hamiltonians that satisfy a
In this paper, we introduce a notion of generalized potential games that is inspired by a newly developed theory on generalized gradient flows. More precisely, a game is called generalized potential if the simultaneous gradient of the loss functions