ترغب بنشر مسار تعليمي؟ اضغط هنا

Meta Navigator: Search for a Good Adaptation Policy for Few-shot Learning

190   0   0.0 ( 0 )
 نشر من قبل Chi Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Few-shot learning aims to adapt knowledge learned from previous tasks to novel tasks with only a limited amount of labeled data. Research literature on few-shot learning exhibits great diversity, while different algorithms often excel at different few-shot learning scenarios. It is therefore tricky to decide which learning strategies to use under different task conditions. Inspired by the recent success in Automated Machine Learning literature (AutoML), in this paper, we present Meta Navigator, a framework that attempts to solve the aforementioned limitation in few-shot learning by seeking a higher-level strategy and proffer to automate the selection from various few-shot learning designs. The goal of our work is to search for good parameter adaptation policies that are applied to different stages in the network for few-shot classification. We present a search space that covers many popular few-shot learning algorithms in the literature and develop a differentiable searching and decoding algorithm based on meta-learning that supports gradient-based optimization. We demonstrate the effectiveness of our searching-based method on multiple benchmark datasets. Extensive experiments show that our approach significantly outperforms baselines and demonstrates performance advantages over many state-of-the-art methods. Code and models will be made publicly available.



قيم البحث

اقرأ أيضاً

Many Few-Shot Learning research works have two stages: pre-training base model and adapting to novel model. In this paper, we propose to use closed-form base learner, which constrains the adapting stage with pre-trained base model to get better gener alized novel model. Following theoretical analysis proves its rationality as well as indication of how to train a well-generalized base model. We then conduct experiments on four benchmarks and achieve state-of-the-art performance in all cases. Notably, we achieve the accuracy of 87.75% on 5-shot miniImageNet which approximately outperforms existing methods by 10%.
Meta-learning has been the most common framework for few-shot learning in recent years. It learns the model from collections of few-shot classification tasks, which is believed to have a key advantage of making the training objective consistent with the testing objective. However, some recent works report that by training for whole-classification, i.e. classification on the whole label-set, it can get comparable or even better embedding than many meta-learning algorithms. The edge between these two lines of works has yet been underexplored, and the effectiveness of meta-learning in few-shot learning remains unclear. In this paper, we explore a simple process: meta-learning over a whole-classification pre-trained model on its evaluation metric. We observe this simple method achieves competitive performance to state-of-the-art methods on standard benchmarks. Our further analysis shed some light on understanding the trade-offs between the meta-learning objective and the whole-classification objective in few-shot learning.
We show that the way inference is performed in few-shot segmentation tasks has a substantial effect on performances -- an aspect often overlooked in the literature in favor of the meta-learning paradigm. We introduce a transductive inference for a gi ven query image, leveraging the statistics of its unlabeled pixels, by optimizing a new loss containing three complementary terms: i) the cross-entropy on the labeled support pixels; ii) the Shannon entropy of the posteriors on the unlabeled query-image pixels; and iii) a global KL-divergence regularizer based on the proportion of the predicted foreground. As our inference uses a simple linear classifier of the extracted features, its computational load is comparable to inductive inference and can be used on top of any base training. Foregoing episodic training and using only standard cross-entropy training on the base classes, our inference yields competitive performances on standard benchmarks in the 1-shot scenarios. As the number of available shots increases, the gap in performances widens: on PASCAL-5i, our method brings about 5% and 6% improvements over the state-of-the-art, in the 5- and 10-shot scenarios, respectively. Furthermore, we introduce a new setting that includes domain shifts, where the base and novel classes are drawn from different datasets. Our method achieves the best performances in this more realistic setting. Our code is freely available online: https://github.com/mboudiaf/RePRI-for-Few-Shot-Segmentation.
93 - Xiao Lin , Meng Ye , Yunye Gong 2021
Adapting pre-trained representations has become the go-to recipe for learning new downstream tasks with limited examples. While literature has demonstrated great successes via representation learning, in this work, we show that substantial performanc e improvement of downstream tasks can also be achieved by appropriate designs of the adaptation process. Specifically, we propose a modular adaptation method that selectively performs multiple state-of-the-art (SOTA) adaptation methods in sequence. As different downstream tasks may require different types of adaptation, our modular adaptation enables the dynamic configuration of the most suitable modules based on the downstream task. Moreover, as an extension to existing cross-domain 5-way k-shot benchmarks (e.g., miniImageNet -> CUB), we create a new high-way (~100) k-shot benchmark with data from 10 different datasets. This benchmark provides a diverse set of domains and allows the use of stronger representations learned from ImageNet. Experimental results show that by customizing adaptation process towards downstream tasks, our modular adaptation pipeline (MAP) improves 3.1% in 5-shot classification accuracy over baselines of finetuning and Prototypical Networks.
Meta-learning has emerged as a trending technique to tackle few-shot text classification and achieved state-of-the-art performance. However, existing solutions heavily rely on the exploitation of lexical features and their distributional signatures o n training data, while neglecting to strengthen the models ability to adapt to new tasks. In this paper, we propose a novel meta-learning framework integrated with an adversarial domain adaptation network, aiming to improve the adaptive ability of the model and generate high-quality text embedding for new classes. Extensive experiments are conducted on four benchmark datasets and our method demonstrates clear superiority over the state-of-the-art models in all the datasets. In particular, the accuracy of 1-shot and 5-shot classification on the dataset of 20 Newsgroups is boosted from 52.1% to 59.6%, and from 68.3% to 77.8%, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا