ﻻ يوجد ملخص باللغة العربية
Newtons second law aids us in predicting the location of a classical object after knowing its initial position and velocity together with the force it experiences at any time, which can be seen as a process of continuous iteration. When it comes to discrete problems, e.g. building Bell inequalities, as a vital tool to study the powerful nonlocal correlations in quantum information processing. Unless having known precisely the general formula of associated inequalities, iterative formulas build a bridge from simple examples to all elements in the set of Bell inequalities. Although exhaust all entities in the set, even in the subset of tight individuals, is a NP hard problem, it is possible to find out the evolution law of Bell inequalities from few-body, limited-setting and low-dimension situations to arbitrary $(n,k,d)$ constructions, i.e. $n$ particles, $k$ measurements per particle, and $d$ outcomes per measurement. In this work, via observing Sliwas 46 tight (3,2,2) Bell inequalities [{Phys. Lett. A}. 317, 165-168 (2003)], uniting the root method [{Phys. Rev. A}. 79, 012115, (2009)] and the idea of degeneration, we discover an iterative formula of Bell inequalities containing all $(n,k,2)$ circumstances, which paves a potential way to study the current Bell inequalities in terms of iterative relations combining root method on the one hand, and explore more interesting inequalities on the other.
We present a scheme for demonstrating violation of Bells inequalities using a spin-1/2 system entangled with a pair of classically distinguishable wave packets in a harmonic potential. In the optical domain, such wave packets can be represented by co
Bells inequality for continuous-variable bipartite systems is studied. The inequality is expressed in terms of pseudo-spin operators and quantum expectation values are calculated for generic two-mode squeezed states characterized by a squeezing param
Nowadays, it is commonly admitted that the experimental violation of Bells inequalities that was successfully demonstrated in the last decades by many experimenters, are indeed the ultimate proof of quantum physics and of its ability to describe the
Bell inequalities (BIs) derived in terms of quantum probability statistics are extended to general bipartite-entangled states of arbitrary spins with parallel polarization. The original formula of Bell for the two-spin singlet is slightly modified in
Quantum violation of Bell inequalities is now used in many quantum information applications and it is important to analyze it both quantitatively and conceptually. In the present paper, we analyze violation of multipartite Bell inequalities via the l