ترغب بنشر مسار تعليمي؟ اضغط هنا

Dual-microcomb generation in a synchronously-driven waveguide ring resonator

65   0   0.0 ( 0 )
 نشر من قبل Yiqing Xu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Microcombs -- optical frequency combs generated in coherently-driven nonlinear microresonators -- have attracted significant attention over the last decade. The ability to generate two such combs in a single resonator device has in particular enabled a host of applications from spectroscopy to imaging. Concurrently, novel comb generation techniques such as synchronous pulsed driving have been developed to enhance the efficiency and flexibility of microcomb generation. Here we report on the first experimental demonstration of dual-microcomb generation via synchronous pulsed pumping of a single microresonator. Specifically, we use two electro-optically generated pulse trains derived from a common continuous wave laser to simultaneously drive two orthogonal polarization modes of an integrated silica ring resonator, observing the generation of coherent dissipative Kerr cavity soliton combs on both polarization axes. Thanks to the resonator birefringence, the two soliton combs are associated with different repetition rates, thus realizing a dual-microcomb source. To illustrate the sources application potential, we demonstrate proof-of-concept spectroscopic measurements.



قيم البحث

اقرأ أيضاً

The Terahertz or millimeter wave frequency band (300 GHz - 3 THz) is spectrally located between microwaves and infrared light and has attracted significant interest for applications in broadband wireless communications, space-borne radiometers for Ea rth remote sensing, astrophysics, and imaging. In particular optically generated THz waves are of high interest for low-noise signal generation. In particular optically generated THz waves are of high interest for low-noise signal generation. Here, we propose and demonstrate stabilized terahertz wave generation using a microresonator-based frequency comb (microcomb). A unitravelling-carrier photodiode (UTC-PD) converts low-noise optical soliton pulses from the microcomb to a terahertz wave at the solitons repetition rate (331 GHz). With a free-running microcomb, the Allan deviation of the Terahertz signal is 4.5*10^-9 at 1 s measurement time with a phase noise of -72 dBc/Hz (-118 dBc/Hz) at 10 kHz (10 MHz) offset frequency. By locking the repetition rate to an in-house hydrogen maser, in-loop fractional frequency stabilities of 9.6*10^-15 and 1.9*10^-17 are obtained at averaging times of 1 s and 2000 s respectively, limited by the maser reference signal. Moreover, the terahertz signal is successfully used to perform a proof-of-principle demonstration of terahertz imaging of peanuts. Combining the monolithically integrated UTC-PD with an on-chip microcomb, the demonstrated technique could provide a route towards highly stable continuous terahertz wave generation in chip-scale packages for out-of-the-lab applications. In particular, such systems would be useful as compact tools for high-capacity wireless communication, spectroscopy, imaging, remote sensing, and astrophysical applications.
We report second harmonic generation from a titanium indiffused lithium niobate waveguide resonator device whose cavity length is locked to the fundamental pump laser using an on-chip phase modulator. The device remains locked for more than 5 minutes , producing more than 80% of the initial second harmonic power. The stability of the system is seen to be limited by DC-drift, a known effect in many lithium niobate systems that include deposited electrodes. The presented device explores the suitability of waveguide resonators in this platform for use in larger integrated networks.
Aluminum nitride is an appealing nonlinear optical material for on-chip wavelength conversion. Here we report optical frequency comb generation from high quality factor aluminum nitride micro-ring resonators integrated on silicon substrates. By engin eering the waveguide structure to achieve near-zero dispersion at telecommunication wavelengths and optimizing the phase matching for four-wave mixing, frequency combs are generated with a single wavelength continuous-wave pump laser. The Kerr coefficient (n2) of aluminum nitride is further extracted from our experimental results.
Photon sources are fundamental components for any quantum photonic technology. The ability to generate high count-rate and low-noise correlated photon pairs via spontaneous parametric down-conversion using bulk crystals has been the cornerstone of mo dern quantum optics. However, future practical quantum technologies will require a scalable integration approach, and waveguide-based photon sources with high-count rate and low-noise characteristics will be an essential part of chip-based quantum technologies. Here, we demonstrate photon pair generation through spontaneous four-wave mixing in a silicon micro-ring resonator, reporting a maximum coincidence-to-accidental (CAR) ratio of 602 (+-) 37, and a maximum photon pair generation rate of 123 MHz (+-) 11 KHz. To overcome free-carrier related performance degradations we have investigated reverse biased p-i-n structures, demonstrating an improvement in the pair generation rate by a factor of up to 2, with negligible impact on CAR.
Unidirectional photonic edge states arise at the interface between two topologically-distinct photonic crystals. Here, we demonstrate a micron-scale GaAs photonic ring resonator, created using a spin Hall-type topological photonic crystal waveguide. Embedded InGaAs quantum dots are used to probe the mode structure of the device. We map the spatial profile of the resonator modes, and demonstrate control of the mode confinement through tuning of the photonic crystal lattice parameters. The intrinsic chirality of the edge states makes them of interest for applications in integrated quantum photonics, and the resonator represents an important building block towards the development of such devices with embedded quantum emitters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا