ترغب بنشر مسار تعليمي؟ اضغط هنا

Dual-view Snapshot Compressive Imaging via Optical Flow Aided Recurrent Neural Network

182   0   0.0 ( 0 )
 نشر من قبل Ruiying Lu
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Dual-view snapshot compressive imaging (SCI) aims to capture videos from two field-of-views (FoVs) using a 2D sensor (detector) in a single snapshot, achieving joint FoV and temporal compressive sensing, and thus enjoying the advantages of low-bandwidth, low-power, and low-cost. However, it is challenging for existing model-based decoding algorithms to reconstruct each individual scene, which usually require exhaustive parameter tuning with extremely long running time for large scale data. In this paper, we propose an optical flow-aided recurrent neural network for dual video SCI systems, which provides high-quality decoding in seconds. Firstly, we develop a diversity amplification method to enlarge the differences between scenes of two FoVs, and design a deep convolutional neural network with dual branches to separate different scenes from the single measurement. Secondly, we integrate the bidirectional optical flow extracted from adjacent frames with the recurrent neural network to jointly reconstruct each video in a sequential manner. Extensive results on both simulation and real data demonstrate the superior performance of our proposed model in a short inference time. The code and data are available at https://github.com/RuiyingLu/OFaNet-for-Dual-view-SCI.

قيم البحث

اقرأ أيضاً

319 - Ziyi Meng , Zhenming Yu , Kun Xu 2021
We consider using {bfem untrained neural networks} to solve the reconstruction problem of snapshot compressive imaging (SCI), which uses a two-dimensional (2D) detector to capture a high-dimensional (usually 3D) data-cube in a compressed manner. Vari ous SCI systems have been built in recent years to capture data such as high-speed videos, hyperspectral images, and the state-of-the-art reconstruction is obtained by the deep neural networks. However, most of these networks are trained in an end-to-end manner by a large amount of corpus with sometimes simulated ground truth, measurement pairs. In this paper, inspired by the untrained neural networks such as deep image priors (DIP) and deep decoders, we develop a framework by integrating DIP into the plug-and-play regime, leading to a self-supervised network for spectral SCI reconstruction. Extensive synthetic and real data results show that the proposed algorithm without training is capable of achieving competitive results to the training based networks. Furthermore, by integrating the proposed method with a pre-trained deep denoising prior, we have achieved state-of-the-art results. {Our code is available at url{https://github.com/mengziyi64/CASSI-Self-Supervised}.}
Snapshot compressive imaging (SCI) aims to record three-dimensional signals via a two-dimensional camera. For the sake of building a fast and accurate SCI recovery algorithm, we incorporate the interpretability of model-based methods and the speed of learning-based ones and present a novel dense deep unfolding network (DUN) with 3D-CNN prior for SCI, where each phase is unrolled from an iteration of Half-Quadratic Splitting (HQS). To better exploit the spatial-temporal correlation among frames and address the problem of information loss between adjacent phases in existing DUNs, we propose to adopt the 3D-CNN prior in our proximal mapping module and develop a novel dense feature map (DFM) strategy, respectively. Besides, in order to promote network robustness, we further propose a dense feature map adaption (DFMA) module to allow inter-phase information to fuse adaptively. All the parameters are learned in an end-to-end fashion. Extensive experiments on simulation data and real data verify the superiority of our method. The source code is available at https://github.com/jianzhangcs/SCI3D.
178 - Xin Yuan 2020
Sampling high-dimensional images is challenging due to limited availability of sensors; scanning is usually necessary in these cases. To mitigate this challenge, snapshot compressive imaging (SCI) was proposed to capture the high-dimensional (usually 3D) images using a 2D sensor (detector). Via novel optical design, the {em measurement} captured by the sensor is an encoded image of multiple frames of the 3D desired signal. Following this, reconstruction algorithms are employed to retrieve the high-dimensional data. Though various algorithms have been proposed, the total variation (TV) based method is still the most efficient one due to a good trade-off between computational time and performance. This paper aims to answer the question of which TV penalty (anisotropic TV, isotropic TV and vectorized TV) works best for video SCI reconstruction? Various TV denoising and projection algorithms are developed and tested for video SCI reconstruction on both simulation and real datasets.
Capturing high-dimensional (HD) data is a long-term challenge in signal processing and related fields. Snapshot compressive imaging (SCI) uses a two-dimensional (2D) detector to capture HD ($ge3$D) data in a {em snapshot} measurement. Via novel optic al designs, the 2D detector samples the HD data in a {em compressive} manner; following this, algorithms are employed to reconstruct the desired HD data-cube. SCI has been used in hyperspectral imaging, video, holography, tomography, focal depth imaging, polarization imaging, microscopy, etc.~Though the hardware has been investigated for more than a decade, the theoretical guarantees have only recently been derived. Inspired by deep learning, various deep neural networks have also been developed to reconstruct the HD data-cube in spectral SCI and video SCI. This article reviews recent advances in SCI hardware, theory and algorithms, including both optimization-based and deep-learning-based algorithms. Diverse applications and the outlook of SCI are also discussed.
156 - Xin Yuan , Yang Liu , Jinli Suo 2021
We consider the reconstruction problem of video snapshot compressive imaging (SCI), which captures high-speed videos using a low-speed 2D sensor (detector). The underlying principle of SCI is to modulate sequential high-speed frames with different ma sks and then these encoded frames are integrated into a snapshot on the sensor and thus the sensor can be of low-speed. On one hand, video SCI enjoys the advantages of low-bandwidth, low-power and low-cost. On the other hand, applying SCI to large-scale problems (HD or UHD videos) in our daily life is still challenging and one of the bottlenecks lies in the reconstruction algorithm. Exiting algorithms are either too slow (iterative optimization algorithms) or not flexible to the encoding process (deep learning based end-to-end networks). In this paper, we develop fast and flexible algorithms for SCI based on the plug-and-play (PnP) framework. In addition to the PnP-ADMM method, we further propose the PnP-GAP (generalized alternating projection) algorithm with a lower computational workload. We first employ the image deep denoising priors to show that PnP can recover a UHD color video with 30 frames from a snapshot measurement. Since videos have strong temporal correlation, by employing the video deep denoising priors, we achieve a significant improvement in the results. Furthermore, we extend the proposed PnP algorithms to the color SCI system using mosaic sensors, where each pixel only captures the red, green or blue channels. A joint reconstruction and demosaicing paradigm is developed for flexible and high quality reconstruction of color video SCI systems. Extensive results on both simulation and real datasets verify the superiority of our proposed algorithm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا