ﻻ يوجد ملخص باللغة العربية
Virial (aka scaling) identities are integral identities that are useful for a variety of purposes in non-linear field theories, including establishing no-go theorems for solitonic and black hole solutions, as well as for checking the accuracy of numerical solutions. In this paper, we provide a pedagogical rationale for the derivation of such integral identities, starting from the standard variational treatment of particle mechanics. In the framework of one-dimensional (1D) effective actions, the treatment presented here yields a set of useful formulas for computing virial identities in any field theory. Then, we propose that a complete treatment of virial identities in relativistic gravity must take into account the appropriate boundary term. For General Relativity this is the Gibbons-Hawking-York boundary term. We test and confirm this proposal with concrete examples. Our analysis here is restricted to spherically symmetric configurations, which yield 1D effective actions (leaving higher-D effective actions and in particular the axially symmetric case to a companion paper). In this case, we show that there is a particular gauge choice, $i.e.$ a choice of coordinates and parameterizing metric functions, that simplifies the computation of virial identities in General Relativity, making both the Einstein-Hilbert action and the Gibbons-Hawking-York boundary term non-contributing. Under this choice, the virial identity results exclusively from the matter action. For generic gauge choices, however, this is not the case.
In this review we consider first order gravity in four dimensions. In particular, we focus our attention in formulations where the fundamental variables are a tetrad $e_a^I$ and a SO(3,1) connection ${omega_{aI}}^J$. We study the most general action
Boundary actions for three-dimensional quantum gravity in the discretized formalism of Ponzano-Regge are studied with a view towards understanding the boundary degrees of freedom. These degrees of freedom postulated in the holography hypothesis are s
The intriguing choice to treat alternative theories of gravity by means of the Palatini approach, namely elevating the affine connection to the role of independent variable, contains the seed of some interesting (usually under-explored) generalizatio
In this article, the bulk viscosity is introduced in a modified gravity model. The gravitational action has a general $f(R,T)$ form, where $R$ and $ T $ are the curvature scalar and the trace of energy momentum tensor respectively. An effective equat
In a recent paper, we introduced a new discretization scheme for gravity in 2+1 dimensions. Starting from the continuum theory, this new scheme allowed us to rigorously obtain the discrete phase space of loop gravity, coupled to particle-like edge mo