ترغب بنشر مسار تعليمي؟ اضغط هنا

Flares Big and Small: a K2 and TESS View of ASAS-SN Superflares

99   0   0.0 ( 0 )
 نشر من قبل Jesse Zeldes
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the flare-frequency distributions of 5 M-dwarfs that experienced superflares with energies in excess of $10^{33}$ erg detected by ASAS-SN. We use K2 and TESS short-cadence observations along with archival ASAS-SN data to categorise the flaring behaviour of these stars across a range of flare energies. We were able to extract a rotation period for 4 of the stars. They were all fast rotators ($P_{mathrm{rot}} leq 6 textrm{d}$), implying relative youth. We find that the flare-frequency distributions for each of the stars are well fit by a power-law, with slopes between $alpha = 1.22$ and $alpha= 1.82$. These slopes are significantly flatter than those of fast-rotating M-dwarfs not selected for their superflaring activity, corresponding to an increased number of high energy flares. Despite our specific selection of superflaring stars with shallow flare-rate distributions and more power in higher-energy flares, we find that the implied UV flux is insufficient to deplete the ozone of earth-sized planets in the habitable zone around these stars. Furthermore, we find that the flares detected on the stars in our sample are insufficient to produce the UV flux needed to fuel abiogenetic processes. These results imply that given available models, even M-dwarfs selected for extreme flaring properties may have insufficient UV emission from flares to impact exolife on earth-sized planets in the habitable zones around M-dwarfs.



قيم البحث

اقرأ أيضاً

We analyzed the light curves of 1376 early-to-late, nearby M dwarfs to search for white-light flares using photometry from the All-Sky Automated Survey for Supernovae (ASAS-SN). We identified 480 M dwarfs with at least one potential flare employing a simple statistical algorithm that searches for sudden increases in $V$-band flux. After more detailed evaluation, we identified 62 individual flares on 62 stars. The event amplitudes range from $0.12 <Delta V < 2.04$ mag. Using classical-flare models, we place lower limits on the flare energies and obtain $V$-band energies spanning $2.0times10^{30} lesssim E_{V} lesssim 6.9times10^{35}$ erg. The fraction of flaring stars increases with spectral type, and most flaring stars show moderate to strong H$alpha$ emission. Additionally, we find that 14 of the 62 flaring stars are rotational variables, and they have shorter rotation periods and stronger H$alpha$ emission than non-flaring rotational variable M dwarfs.
The All-Sky Automated Survey for Supernovae (ASAS-SN) is the only project in existence to scan the entire sky in optical light every $sim$day, reaching a depth of $gsim18$ mag. Over the course of its first four years of transient alerts (2013-2016), ASAS-SN observed 53 events classified as likely M dwarf flares. We present follow-up photometry and spectroscopy of all 53 candidates, confirming flare events on 47 M dwarfs, one K dwarf, and one L dwarf. The remaining four objects include a previously identified TT Tauri star, a young star with outbursts, and two objects too faint to confirm. A detailed examination of the 49 flare star light curves revealed an additional six flares on five stars, resulting in a total of 55 flares on 49 objects ranging in $V$-band contrast from $Delta V = -1$ to $-10.2$ mags. Using an empirical flare model to estimate the unobserved portions of the flare light curve, we obtain lower limits on the $V$-band energy emitted during each flare, spanning $log(E_V/{rm ergs})=32$ to $35$, which are among the most energetic flares detected on M dwarfs. The ASAS-SN M-dwarf flare stars show a higher fraction of H$alpha$ emission as well as stronger H$alpha$ emission compared to M dwarfs selected without reference to activity, consistent with belonging to a population of more magnetically active stars. We also examined the distribution of tangential velocities, finding that the ASAS-SN flaring M dwarfs are likely to be members of the thin disk and are neither particularly young nor old.
Superflares may provide the dominant source of biologically relevant UV radiation to rocky habitable zone M-dwarf planets (M-Earths), altering planetary atmospheres and conditions for surface life. The combined line and continuum flare emission has u sually been approximated by a 9000 K blackbody. If superflares are hotter, then the UV emission may be 10X higher than predicted from the optical. However, it is unknown for how long M-dwarf superflares reach temperatures above 9000 K. Only a handful of M-dwarf superflares have been recorded with multi-wavelength high-cadence observations. We double the total number of events in the literature using simultaneous Evryscope and TESS observations to provide the first systematic exploration of the temperature evolution of M-dwarf superflares. We also increase the number of superflaring M-dwarfs with published time-resolved blackbody evolution by ~10X. We measure temperatures at 2 min cadence for 42 superflares from 27 K5-M5 dwarfs. We find superflare peak temperatures (defined as the mean of temperatures corresponding to flare FWHM) increase with flare energy and impulse. We find the amount of time flares emit at temperatures above 14,000 K depends on energy. We discover 43% of the flares emit above 14,000 K, 23% emit above 20,000 K and 5% emit above 30,000 K. The largest and hottest flare briefly reached 42,000 K. Some do not reach 14,000 K. During superflares, we estimate M-Earths orbiting <200 Myr stars typically receive a top-of-atmosphere UV-C flux of ~120 W m^-2 and up to 10^3 W m^-2, 100-1000X the time-averaged XUV flux from Proxima Cen.
We introduce a catalog of stellar properties for stars observed by the Kepler follow-on mission, K2. We base the catalog on a cross-match between the K2 Campaign target lists and the current working version of the NASA TESS target catalog. The result ing K2-TESS Stellar Properties Catalog includes value-added information from the TESS Target Catalog, including stellar colors, proper motions, effective temperatures, an estimated luminosity class (dwarf/subgiant versus giant) for each star based on reduced-proper-motion, and many other properties via cross-matching to other all-sky catalogs. Also included is the Guest Observer program identification number(s) associated with each K2 target. The K2-TESS Stellar Properties Catalog is available to the community as a freely accessible data portal on the Filtergraph system at: http://filtergraph.vanderbilt.edu/tess_k2campaigns .
Recently, many superflares on solar-type stars were discovered as white-light flares (WLFs). A correlation between the energies (E) and durations (t) of superflares is derived as $tpropto E^{0.39}$, and this can be theoretically explained by magnetic reconnection ($tpropto E^{1/3}$). In this study, we carried out a statistical research on 50 solar WLFs with SDO/HMI to examine the t-E relation. As a result, the t-E relation on solar WLFs ($tpropto E^{0.38}$) is quite similar stellar superflares, but the durations of stellar superflares are much shorter than those extrapolated from solar WLFs. We present the following two interpretations; (1) in solar flares, the cooling timescale of WL emission may be longer than the reconnection one, and the decay time can be determined by the cooling timescale; (2) the distribution can be understood by applying a scaling law $tpropto E^{1/3}B^{-5/3}$ derived from the magnetic reconnection theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا