ﻻ يوجد ملخص باللغة العربية
We present Panoptic SegFormer, a general framework for end-to-end panoptic segmentation with Transformers. The proposed method extends Deformable DETR with a unified mask prediction workflow for both things and stuff, making the panoptic segmentation pipeline concise and effective. With a ResNet-50 backbone, our method achieves 50.0% PQ on the COCO test-dev split, surpassing previous state-of-the-art methods by significant margins without bells and whistles. Using a more powerful PVTv2-B5 backbone, Panoptic-SegFormer achieves a new record of 54.1%PQ and 54.4% PQ on the COCO val and test-dev splits with single scale input.
Pursuing more complete and coherent scene understanding towards realistic vision applications drives edge detection from category-agnostic to category-aware semantic level. However, finer delineation of instance-level boundaries still remains unexcav
Panoptic segmentation has become a new standard of visual recognition task by unifying previous semantic segmentation and instance segmentation tasks in concert. In this paper, we propose and explore a new video extension of this task, called video p
Our goal is to forecast the near future given a set of recent observations. We think this ability to forecast, i.e., to anticipate, is integral for the success of autonomous agents which need not only passively analyze an observation but also must re
This paper proposes Panoptic Narrative Grounding, a spatially fine and general formulation of the natural language visual grounding problem. We establish an experimental framework for the study of this new task, including new ground truth and metrics
Panoptic segmentation is posed as a new popular test-bed for the state-of-the-art holistic scene understanding methods with the requirement of simultaneously segmenting both foreground things and background stuff. The state-of-the-art panoptic segmen