ﻻ يوجد ملخص باللغة العربية
We study universal aspects of fluctuations in an ensemble of noninteracting continuous quantum thermal machines in the steady state limit. Considering an individual machine, such as a refrigerator, in which relative fluctuations (and high order cumulants) of the cooling heat current to the absorbed heat current, $eta^{(n)}$, are upper-bounded, $eta^{(n)}leq eta_C^n$ with $ngeq 2$ and $eta_C$ the Carnot efficiency, we prove that an {it ensemble} of $N$ distinct machines similarly satisfies this upper bound on the relative fluctuations of the ensemble, $eta_N^{(n)}leq eta_C^n$. For an ensemble of distinct quantum {it refrigerators} with components operating in the tight coupling limit we further prove the existence of a {it lower bound} on $eta_N^{(n)}$ in specific cases, exemplified on three-level quantum absorption refrigerators and resonant-energy thermoelectric junctions. Beyond special cases, the existence of a lower bound on $eta_N^{(2)}$ for an ensemble of quantum refrigerators is demonstrated by numerical simulations.
We study bounds on ratios of fluctuations in steady-state time-reversal heat engines controlled by multi affinities. In the linear response regime, we prove that the relative fluctuations (precision) of the output current (power) is always lower-boun
When engineering microscopic machines, increasing efficiency can often come at a price of reduced reliability due to the impact of stochastic fluctuations. Here we develop a general method for performing multi-objective optimisation of efficiency and
We study the statistics of the efficiency in a class of isothermal cyclic machines with realistic coupling between the internal degrees of freedom. We derive, under fairly general assumptions, the probability distribution function for the efficiency.
An approach for simulating bionanosystems, such as viruses and ribosomes, is presented. This calibration-free approach is based on an all-atom description for bionanosystems, a universal interatomic force field, and a multiscale perspective. The supr
We develop and test a computational framework to study heat exchange in interacting, nonequilibrium open quantum systems. Our iterative full counting statistics path integral (iFCSPI) approach extends a previously well-established influence functiona