ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral evolution of an eruptive polar crown prominence with IRIS observations

106   0   0.0 ( 0 )
 نشر من قبل Jianchao Xue
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Prominence eruption is closely related to coronal mass ejections and is an important topic in solar physics. Spectroscopic observation is an effective way to explore the plasma properties, but the spectral observations of eruptive prominences are rare. In this paper we will introduce an eruptive polar crown prominence with spectral observations from the Interface Region Imaging Spectrograph (IRIS), and try to explain some phenomena that are rarely reported in previous works. The eruptive prominence experiences a slow-rise and fast-rise phase, while the line-of-sight motions of the prominence plasma could be divided into three periods: two hours before the fast-rise phase, opposite Doppler shifts are found at the two sides of the prominence axis;then, red shifts dominate the prominence gradually; in the fast-rise phase, the prominence gets to be blue-shifted. During the second period, a faint component appears in Mg II k window with a narrow line width and a large red shift. A faint region is also found in AIA 304-angstrom images along the prominence spine, and the faint region gets darker during the expansion of the spine. We propose that the opposite Doppler shifts in the first period is a feature of the polar crown prominence that we studied. The red shifts in the second period is possibly due to mass drainage during the elevation of the prominence spine, which could accelerate the eruption in return. The blue shifts in the third period is due to that the prominence erupts toward the observer. We suggest that the faint component appears due to the decreasing of the plasma density, and the latter results from the expansion of the prominence spine.

قيم البحث

اقرأ أيضاً

We present an investigation of the polar crown prominence that erupted on 2012 March 12. This prominence is observed at the southeast limb by SDO/AIA (end-on view) and displays a quasi vertical-thread structure. Bright U-shape/horn-like structure is observed surrounding the upper portion of the prominence at 171 angstrom before the eruption and becomes more prominent during the eruption. The disk view of STEREO-B shows that this long prominence is composed of a series of vertical threads and displays a half loop-like structure during the eruption. We focus on the magnetic support of the prominence vertical threads by studying the structure and dynamics of the prominence before and during the eruption using observations from SDO and STEREO-B. We also construct a series of magnetic field models (sheared arcade model, twisted flux rope model, and unstable model with hyperbolic flux tube (HFT)). Various observational characteristics appear to be in favor of the twisted flux rope model. We find that the flux rope supporting the prominence enters the regime of torus instability at the onset of the fast rise phase, and signatures of reconnection (post-eruption arcade, new U-shape structure, rising blobs) appear about one hour later. During the eruption, AIA observes dark ribbons seen in absorption at 171 angstrom corresponding to the bright ribbons shown at 304 angstrom, which might be caused by the erupting filament material falling back along the newly reconfigured magnetic fields. Brightenings at the inner edge of the erupting prominence arcade are also observed in all AIA EUV channels, which might be caused by the heating due to energy released from reconnection below the rising prominence.
We study the dynamics and evolution of a C2.3 two-ribbon flare, developed on 2002 August 11, during the impulsive and the long gradual phase. To this end we obtained multiwavelength observations using the CDS spectrometer aboard SOHO, facilities at t he NSO/Sacramento Peak, and the TRACE and RHESSI spacecrafts. CDS spectroheliograms in the Fe XIX, Fe XVI, O V and He I lines allows us to determine the velocity field at different heights/temperatures during the flare and to compare them with the chromospheric velocity fields deduced from H alpha image differences. TRACE images in the 17.1 nm band greatly help in determining the morphology and the evolution of the flaring structures. During the impulsive phase a strong blue-shifted Fe XIX component (-200 km/s) is observed at the footpoints of the flaring loop system, together with a red-shifted emission of O V and He I lines (20 km/s). In one footpoint simultaneous H alpha data are also available and we find, at the same time and location, downflows with an inferred velocity between 4 and 10 km/s. We also verify that the instantaneous momenta of the oppositely directed flows detected in Fe XIX and H alpha are equal within one order of magnitude. These signatures are in general agreement with the scenario of explosive chromospheric evaporation. Combining RHESSI and CDS data after the coronal upflows have ceased, we prove that, independently from the filling factor, an essential contribution to the density of the post-flare loop system is supplied from evaporated chromospheric material. Finally, we consider the cooling of this loop system, that becomes successively visible in progressively colder signatures during the gradual phase. We show that the observed cooling behaviour can be obtained assuming a coronal filling factor between 0.2 and 0.5.
Spectroscopic observations of prominence eruptions associated with coronal mass ejections (CMEs), although relatively rare, can provide valuable plasma and 3D geometry diagnostics. We report the first observations by the Interface Region Imaging Spec trograph (IRIS) mission of a spectacular fast CME/prominence eruption associated with an equivalent X1.6 flare on 2014 May 9. The maximum plane-of-sky and Doppler velocities of the eruption are 1200 and 460 km/s, respectively. There are two eruption components separated by ~200 km/s in Doppler velocity: a primary, bright component and a secondary, faint component, suggesting a hollow, rather than solid, cone-shaped distribution of material. The eruption involves a left-handed helical structure undergoing counter-clockwise (viewed top-down) unwinding motion. There is a temporal evolution from upward eruption to downward fallback with less-than-free-fall speeds and decreasing nonthermal line widths. We find a wide range of Mg II k/h line intensity ratios (less than ~2 expected for optically-thin thermal emission): the lowest ever-reported median value of 1.17 found in the fallback material and a comparably high value of 1.63 in nearby coronal rain and intermediate values of 1.53 and 1.41 in the two eruption components. The fallback material exhibits a strong ($> 5 sigma$) linear correlation between the k/h ratio and the Doppler velocity as well as the line intensity. We demonstrate that Doppler dimming of scattered chromospheric emission by the erupted material can potentially explain such characteristics.
We investigate triggering, activation, and ejection of a solar eruptive prominence that occurred in a multi-polar flux system of active region NOAA 11548 on 2012 August 18 by analyzing data from AIA on board SDO, RHESSI, and EUVI/SECCHI on board STER EO. Prior to the prominence activation, we observed striking coronal activities in the form of a blowout jet which is associated with rapid eruption of a cool flux rope. Further, the jet-associated flux rope eruption underwent splitting and rotation during its outward expansion. These coronal activities are followed by the prominence activation during which it slowly rises with a speed of ~12 km/s while the region below the prominence emits gradually varying EUV and thermal X-ray emissions. From these observations, we propose that the prominence eruption is a complex, multi-step phenomenon in which a combination of internal (tether-cutting reconnection) and external (i.e., pre-eruption coronal activities) processes are involved. The prominence underwent catastrophic loss of equilibrium with the onset of the impulsive phase of an M1.8 flare suggesting large-scale energy release by coronal magnetic reconnection. We obtained signatures of particle acceleration in the form of power law spectra with hard electron spectral index (delta ~ 3) and strong HXR footpoint sources. During the impulsive phase, a hot EUV plasmoid was observed below the apex of the erupting prominence that ejected in the direction of the prominence with a speed of ~177 km/s. The temporal, spatial and kinematic correlations between the erupting prominence and the plasmoid imply that the magnetic reconnection supported the fast ejection of prominence in the lower corona.
80 - D. Li , D.E. Innes , 2015
Context: Flare kernels brighten simultaneously in all SDO/AIA channels making it difficult to determine their temperature structure. IRIS is able to spectrally resolve Fe xxi emission from cold chromospheric brightenings, so can be used to infer the amount of Fe xxi emission in 131 channel. Aims: We use observations of two small solar flares seen by IRIS and SDO to compare the EMs deduced from the IRIS Fe xxi line and the AIA 131 channel to determine the fraction of Fe xxi emission in flare kernels in the 131 channel of AIA. Methods: Cotemporal and cospatial pseudo-raster AIA images are compared with the IRIS results.We use multi-Gaussian line fitting to separate the blending chromospheric emission so as to derive Fe xxi intensities and Doppler shifts in IRIS spectra. Results: We define loop and kernel regions based on the brightness of the 131 and 1600 {AA} intensities. In the loop regions the Fe xxi EMs are typically 80% of the 131 ones, and range from 67% to 92%. Much of the scatter is due to small misalignments but the largest site with low Fe xxi contributions was probably affected by a recent injection of cool plasma into the loop. In flare kernels the contribution of Fe xxi increases from less than 10% at the low intensity 131 sites to 40-80% in the brighter kernels. Here the Fe xxi is superimposed on bright chromospheric emission and the Fe xxi line shows blue shifts, sometimes extending up to the edge of the spectral window, 200 km/s. Conclusions: The AIA 131 emission in flare loops is due to Fe xxi emission with a 10-20% contribution from continuum, Fe xxiii, and cooler background plasma emission. In bright flare kernels up to 52% of the 131 is from cooler plasma. The wide range seen in the kernels is caused by significant structure in the kernels which is seen as sharp gradients in Fe xxi EM at sites of molecular and transition region emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا