ترغب بنشر مسار تعليمي؟ اضغط هنا

Studies of a muon-based mass sensitive parameter for the IceTop surface array

53   0   0.0 ( 0 )
 نشر من قبل Donghwa Kang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

IceTop is the surface instrumentation of the IceCube Neutrino Observatory at the South Pole. It is designed to measure extensive air showers of cosmic rays in the primary energy range from PeV to EeV. Air showers induced by heavier primary particles develop earlier in the atmosphere and produce more muons observable at ground level than lighter cosmic rays with the same primary energy. Therefore, the fraction of muons to all charged particles measured by IceTop characterizes the mass of primary particles. This analysis seeks a muon-based mass sensitive parameter by using the charge signal distribution for each individual cosmic ray event. In this contribution we present the analysis method for the mass-sensitive parameter and our studies of its possible application to the measurement of cosmic ray mass composition with the IceTop surface array.



قيم البحث

اقرأ أيضاً

A new family of parameters intended for composition studies is presented. They make exclusive use of surface data combining the information from the total signal at each triggered detector and the array geometry. We perform an analytical study of the se composition estimators in order to assess their reliability, stability and possible optimization. The influence of the different slopes of the proton and Iron lateral distribution function on the discrimination power of the estimators is also studied. Additionally, the stability of the parameter in face of a possible underestimation of the size of the muon component by the shower simulation codes, as it is suggested by experimental evidence, is also studied.
432 - Todor Stanev 2009
We describe the design and performance of IceTop, the air shower array on top of the IceCube neutrino detector. After the 2008/09 antarctic summer season both detectors are deployed at almost 3/4 of their design size. With the current IceTop 59 stati ons we can start the study of showers of energy well above 10$^{17}$ eV. The paper also describes the first results from IceTop and our plans to study the cosmic ray composition using several different types of analysis.
We report on the observation of anisotropy in the arrival direction distribution of cosmic rays at PeV energies. The analysis is based on data taken between 2009 and 2012 with the IceTop air shower array at the South Pole. IceTop, an integral part of the IceCube detector, is sensitive to cosmic rays between 100 TeV and 1 EeV. With the current size of the IceTop data set, searches for anisotropy at the 10^-3 level can, for the first time, be extended to PeV energies. We divide the data set into two parts with median energies of 400 TeV and 2 PeV, respectively. In the low energy band, we observe a strong deficit with an angular size of about 30 degrees and an amplitude of (-1.58 +/- 0.46 (stat) +/- 0.52 (sys)) x 10^(-3) at a location consistent with previous observations of cosmic rays with the IceCube neutrino detector. The study of the high energy band shows that the anisotropy persists to PeV energies and increases in amplitude to (-3.11 +/- 0.38 (stat) +/- 0.96 (sys)) x 10^(-3).
IceTop, the surface component of the IceCube Neutrino Observatory at the South Pole, is an air shower array with an area of 1 km2. The detector allows a detailed exploration of the mass composition of primary cosmic rays in the energy range from abou t 100 TeV to 1 EeV by exploiting the correlation between the shower energy measured in IceTop and the energy deposited by muons in the deep ice. In this paper we report on the technical design, construction and installation, the trigger and data acquisition systems as well as the software framework for calibration, reconstruction and simulation. Finally the first experience from commissioning and operating the detector and the performance as an air shower detector will be discussed.
81 - F. Berg , L. Desorgher , A. Fuchs 2015
Meson factories are powerful drivers of diverse physics programmes. With beam powers already in the MW-regime attention has to be turned to target and beam line design to further significantly increase surface muon rates available for experiments. Fo r this reason we have explored the possibility of using a neutron spallation target as a source of surface muons by performing detailed Geant4 simulations with pion production cross sections based on a parametrization of existing data. While the spallation target outperforms standard targets in the backward direction by more than a factor 7 it is not more efficient than standard targets viewed under 90{deg}. Not surprisingly, the geometry of the target plays a large role in the generation of surface muons. Through careful optimization, a gain in surface muon rate of between 30 - 60% over the standard box-like target used at the Paul Scherrer Institute could be achieved by employing a rotated slab target. An additional 10% gain could also be possible by utilizing novel target materials such as, e.g., boron carbide.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا