ترغب بنشر مسار تعليمي؟ اضغط هنا

Shortened effect of coherence length of light due to nonselective linear absorption

249   0   0.0 ( 0 )
 نشر من قبل Xing-Chu Zhang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

From the Michelson interference of He-Ne laser beam, it is found that the coherence length of the beam decreases with the decrease of intensity when the laser beam passes through a nonselective absorption filter and the intensity becomes low enough. The effect can be explained by using the discrete wavelet structure model of classic plane light waves.

قيم البحث

اقرأ أيضاً

We propose a method called `coherence swapping which enables us to create superposition of a particle in two distinct paths, which is fed with initially incoherent, independent radiations. This phenomenon is also present for the charged particles, an d can be used to swap the effect of flux line due to Aharonov-Bohm effect. We propose an optical version of the experimental set-up to test the coherence swapping. The phenomenon, which is simpler than entanglement swapping or teleportation, raises some fundamental questions about true nature of wave-particle duality, and also opens up the possibility of studying the quantum erasure from a new angle.
Marine microorganisms often reach high swimming speeds, either to take advantage of evanescent nutrient patches or to beat Brownian forces. Since this implies that a sizable part of their energetic budget must be allocated to motion, it is reasonable to assume that some fast-swimming microorganisms may increase their nutrient intake by increasing their speed v. We formulate a model to investigate this hypothesis and its consequences, finding the steady state solutions and analyzing their stability. Surprisingly, we find that even modest increases in nutrient absorption may lead to a significant increase of the microbial speed. In fact, evaluations obtained using realistic parameter values for bacteria indicate that the speed increase due to the enhanced nutrient absorption may be quite large.
292 - Gagik Ter-Kazarian 2013
We derive a standard Lorentz code (SLC) of motion by exploring rigid double transformations of, so-called, master space-induced supersymmetry (MS-SUSY), subject to certain rules. The renormalizable and actually finite flat-space field theories with $ N_{max}=4$ supersymmetries in four dimensions, if only such symmetries are fundamental to nature, yield the possible extension of Lorentz code (ELC), at which the SLC violating new physics appears. In the framework of local MS-SUSY, we address the inertial effects. We argue that a space-time deformation of MS is the origin of inertia effects that can be observed by us. We go beyond the hypothesis of locality. This allows to improve the relevant geometrical structures referred to the noninertial frame in Minkowski space for an arbitrary velocities and characteristic acceleration lengths. This framework furnishes justification for the introduction of the weak principle of equivalence, i.e., the universality of free fall. The implications of the inertia effects in the more general post-Riemannian geometry are briefly discussed.
Quantum coherence, the physical property underlying fundamental phenomena such as multi-particle interference and entanglement, has emerged as a valuable resource upon which modern technologies are founded. In general, the most prominent adversary of quantum coherence is noise arising from the interaction of the associated dynamical system with its environment. Under certain conditions, however, the existence of noise may drive quantum and classical systems to endure intriguing nontrivial effects. In this vein, here we demonstrate, both theoretically and experimentally, that when two indistinguishable non-interacting particles co-propagate through quantum networks affected by non-dissipative noise, the system always evolves into a steady state in which coherences accounting for particle indistinguishabilty perpetually prevail. Furthermore, we show that the same steady state with surviving quantum coherences is reached even when the initial state exhibits classical correlations.
Motivated by importance of the existence of quark matter on structure of neutron star. For this purpose, we use a suitable equation of state (EoS) which include three different parts: i) a layer of hadronic matter, ii) a mixed phase of quarks and had rons, and, iii) a strange quark matter in the core. For this system, in order to do more investigation of the EoS, we evaluate energy, Le Chateliers principle and stability conditions. Our results show that the EoS satisfies these conditions. Considering this EoS, we study the effect of quark matter on the structure of neutron stars such as maximum mass and the corresponding radius, average density, compactness, Kretschmann scalar, Schwarzschild radius, gravitational redshift and dynamical stability. Also, considering the mentioned EoS in this paper, we find that the maximum mass of hybrid stars is a little smaller than that of the corresponding pure neutron star. Indeed the maximum mass of hybrid stars can be quite close to the pure neutron stars. Our calculations about the dynamical stability show that these stars are stable against the radial adiabatic infinitesimal perturbations. In addition, our analyze indicates that neutron stars are under a contraction due to the existence of quark core.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا