ﻻ يوجد ملخص باللغة العربية
This report describes our submission to the track 1 and track 2 of the VoxCeleb Speaker Recognition Challenge 2021 (VoxSRC 2021). Both track 1 and track 2 share the same speaker verification system, which only uses VoxCeleb2-dev as our training set. This report explores several parts, including data augmentation, network structures, domain-based large margin fine-tuning, and back-end refinement. Our system is a fusion of 9 models and achieves first place in these two tracks of VoxSRC 2021. The minDCF of our submission is 0.1034, and the corresponding EER is 1.8460%.
This paper describes the ByteDance speaker diarization system for the fourth track of the VoxCeleb Speaker Recognition Challenge 2021 (VoxSRC-21). The VoxSRC-21 provides both the dev set and test set of VoxConverse for use in validation and a standal
In this report, we describe the Beijing ZKJ-NPU team submission to the VoxCeleb Speaker Recognition Challenge 2021 (VoxSRC-21). We participated in the fully supervised speaker verification track 1 and track 2. In the challenge, we explored various ki
This paper describes the XMUSPEECH speaker recognition and diarisation systems for the VoxCeleb Speaker Recognition Challenge 2021. For track 2, we evaluate two systems including ResNet34-SE and ECAPA-TDNN. For track 4, an important part of our syste
This report describes the systems submitted to the first and second tracks of the VoxCeleb Speaker Recognition Challenge (VoxSRC) 2020, which ranked second in both tracks. Three key points of the system pipeline are explored: (1) investigating multip
In this report, we describe our submission to the VoxCeleb Speaker Recognition Challenge (VoxSRC) 2020. Two approaches are adopted. One is to apply query expansion on speaker verification, which shows significant progress compared to baseline in the