ﻻ يوجد ملخص باللغة العربية
Reachability, distance, and matching are some of the most fundamental graph problems that have been of particular interest in dynamic complexity theory in recent years [DKMSZ18, DMVZ18, DKMTVZ20]. Reachability can be maintained with first-order update formulas, or equivalently in DynFO in general graphs with n nodes [DKMSZ18], even under O(log n/loglog n) changes per step [DMVZ18]. In the context of how large the number of changes can be handled, it has recently been shown [DKMTVZ20] that under a polylogarithmic number of changes, reachability is in DynFOpar in planar, bounded treewidth, and related graph classes -- in fact in any graph where small non-zero circulation weights can be computed in NC. We continue this line of investigation and extend the meta-theorem for reachability to distance and bipartite maximum matching with the same bounds. These are amongst the most general classes of graphs known where we can maintain these problems deterministically without using a majority quantifier and even maintain witnesses. For the bipartite matching result, modifying the approach from [FGT], we convert the static non-zero circulation weights to dynamic matching-isolating weights. While reachability is in DynFOar under O(log n/loglog n) changes, no such bound is known for either distance or matching in any non-trivial class of graphs under non-constant changes. We show that, in the same classes of graphs as before, bipartite maximum matching is in DynFOar under O(log n/loglog n) changes per step. En route to showing this we prove that the rank of a matrix can be maintained in DynFOar, also under O(log n/loglog n) entry changes, improving upon the previous O(1) bound [DKMSZ18]. This implies similar extension for the non-uniform DynFO bound for maximum matching in general graphs and an alternate algorithm for maintaining reachability under O(log n/loglog n) changes [DMVZ18].
The graph isomorphism, subgraph isomorphism, and graph edit distance problems are combinatorial problems with many applications. Heuristic exact and approximate algorithms for each of these problems have been developed for different kinds of graphs:
The elimination distance to some target graph property P is a general graph modification parameter introduced by Bulian and Dawar. We initiate the study of elimination distances to graph properties expressible in first-order logic. We delimit the pro
We provide elementary algorithms for two preservation theorems for first-order sentences (FO) on the class ^ad of all finite structures of degree at most d: For each FO-sentence that is preserved under extensions (homomorphisms) on ^ad, a ^ad-equival
We show that noninterference and transparency, the key soundness theorems for dynamic IFC libraries, can be obtained for free, as direct consequences of the more general parametricity theorem of type abstraction. This allows us to give very short sou
We characterise the sentences in Monadic Second-order Logic (MSO) that are over finite structures equivalent to a Datalog program, in terms of an existential pebble game. We also show that for every class C of finite structures that can be expressed