ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural PathSim for Inductive Similarity Search in Heterogeneous Information Networks

88   0   0.0 ( 0 )
 نشر من قبل Wenyi Xiao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

PathSim is a widely used meta-path-based similarity in heterogeneous information networks. Numerous applications rely on the computation of PathSim, including similarity search and clustering. Computing PathSim scores on large graphs is computationally challenging due to its high time and storage complexity. In this paper, we propose to transform the problem of approximating the ground truth PathSim scores into a learning problem. We design an encoder-decoder based framework, NeuPath, where the algorithmic structure of PathSim is considered. Specifically, the encoder module identifies Top T optimized path instances, which can approximate the ground truth PathSim, and maps each path instance to an embedding vector. The decoder transforms each embedding vector into a scalar respectively, which identifies the similarity score. We perform extensive experiments on two real-world datasets in different domains, ACM and IMDB. Our results demonstrate that NeuPath performs better than state-of-the-art baselines in the PathSim approximation task and similarity search task.



قيم البحث

اقرأ أيضاً

132 - Jingbo Shang , Meng Qu , Jialu Liu 2016
Most real-world data can be modeled as heterogeneous information networks (HINs) consisting of vertices of multiple types and their relationships. Search for similar vertices of the same type in large HINs, such as bibliographic networks and business -review networks, is a fundamental problem with broad applications. Although similarity search in HINs has been studied previously, most existing approaches neither explore rich semantic information embedded in the network structures nor take users preference as a guidance. In this paper, we re-examine similarity search in HINs and propose a novel embedding-based framework. It models vertices as low-dimensional vectors to explore network structure-embedded similarity. To accommodate user preferences at defining similarity semantics, our proposed framework, ESim, accepts user-defined meta-paths as guidance to learn vertex vectors in a user-preferred embedding space. Moreover, an efficient and parallel sampling-based optimization algorithm has been developed to learn embeddings in large-scale HINs. Extensive experiments on real-world large-scale HINs demonstrate a significant improvement on the effectiveness of ESim over several state-of-the-art algorithms as well as its scalability.
109 - Yu Shi , Huan Gui , Qi Zhu 2018
Heterogeneous information networks (HINs) are ubiquitous in real-world applications. Due to the heterogeneity in HINs, the typed edges may not fully align with each other. In order to capture the semantic subtlety, we propose the concept of aspects w ith each aspect being a unit representing one underlying semantic facet. Meanwhile, network embedding has emerged as a powerful method for learning network representation, where the learned embedding can be used as features in various downstream applications. Therefore, we are motivated to propose a novel embedding learning framework---AspEm---to preserve the semantic information in HINs based on multiple aspects. Instead of preserving information of the network in one semantic space, AspEm encapsulates information regarding each aspect individually. In order to select aspects for embedding purpose, we further devise a solution for AspEm based on dataset-wide statistics. To corroborate the efficacy of AspEm, we conducted experiments on two real-words datasets with two types of applications---classification and link prediction. Experiment results demonstrate that AspEm can outperform baseline network embedding learning methods by considering multiple aspects, where the aspects can be selected from the given HIN in an unsupervised manner.
Heterogeneous Information Network (HIN) has attracted much attention due to its wide applicability in a variety of data mining tasks, especially for tasks with multi-typed objects. A potentially large number of meta-paths can be extracted from the he terogeneous networks, providing abundant semantic knowledge. Though a variety of meta-paths can be defined, too many meta-paths are redundant. Reduction on the number of meta-paths can enhance the effectiveness since some redundant meta-paths provide interferential linkage to the task. Moreover, the reduced meta-paths can reflect the characteristic of the heterogeneous network. Previous endeavors try to reduce the number of meta-paths under the guidance of supervision information. Nevertheless, supervised information is expensive and may not always be available. In this paper, we propose a novel algorithm, SPMR (Semantic Preserving Meta-path Reduction), to reduce a set of pre-defined meta-paths in an unsupervised setting. The proposed method is able to evaluate a set of meta-paths to maximally preserve the semantics of original meta-paths after reduction. Experimental results show that SPMR can select a succinct subset of meta-paths which can achieve comparable or even better performance with fewer meta-paths.
Events are happening in real-world and real-time, which can be planned and organized for occasions, such as social gatherings, festival celebrations, influential meetings or sports activities. Social media platforms generate a lot of real-time text i nformation regarding public events with different topics. However, mining social events is challenging because events typically exhibit heterogeneous texture and metadata are often ambiguous. In this paper, we first design a novel event-based meta-schema to characterize the semantic relatedness of social events and then build an event-based heterogeneous information network (HIN) integrating information from external knowledge base. Second, we propose a novel Pairwise Popularity Graph Convolutional Network, named as PP-GCN, based on weighted meta-path instance similarity and textual semantic representation as inputs, to perform fine-grained social event categorization and learn the optimal weights of meta-paths in different tasks. Third, we propose a streaming social event detection and evolution discovery framework for HINs based on meta-path similarity search, historical information about meta-paths, and heterogeneous DBSCAN clustering method. Comprehensive experiments on real-world streaming social text data are conducted to compare various social event detection and evolution discovery algorithms. Experimental results demonstrate that our proposed framework outperforms other alternative social event detection and evolution discovery techniques.
Meta-graph is currently the most powerful tool for similarity search on heterogeneous information networks,where a meta-graph is a composition of meta-paths that captures the complex structural information. However, current relevance computing based on meta-graph only considers the complex structural information, but ignores its embedded meta-paths information. To address this problem, we proposeMEta-GrAph-based network embedding models, called MEGA and MEGA++, respectively. The MEGA model uses normalized relevance or similarity measures that are derived from a meta-graph and its embedded meta-paths between nodes simultaneously, and then leverages tensor decomposition method to perform node embedding. The MEGA++ further facilitates the use of coupled tensor-matrix decomposition method to obtain a joint embedding for nodes, which simultaneously considers the hidden relations of all meta information of a meta-graph.Extensive experiments on two real datasets demonstrate thatMEGA and MEGA++ are more effective than state-of-the-art approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا