ﻻ يوجد ملخص باللغة العربية
Runaway stars are characterised by their remarkably high space velocities, and the study of their formation mechanisms has attracted considerable interest. Young, nearby runaway stars are the most favorable for identifying their place of origin, and for searching for possible associated objects such as neutron stars. Usually the research field of runaway stars focuses on O- and B-type stars, because these objects are better detectable at larger distances than late-type stars. Early-type runaway stars have the advantage, that they evolve faster and can therefore better be confirmed to be young. In contrast to this, the catalogue of young runaway stars within 3 kpc by Tetzlaff, Neuhauser, & Hohle (2011) contains also stars of spectral type A and later. The objects in this catalogue were originally classified as young ($le 50$ Myr) runaway stars by using Hipparcos data to estimate the ages from their location in the Hertzsprung-Russell diagram and evolutionary models. In this article, we redetermine and/or constrain their ages not only by using the more precise second data release of the Gaia mission, but also by measuring the equivalent width of the lithium (6708 $unicode{xC5}$) line, which is a youth indicator. Therefore, we searched for lithium absorption in the spectra of 51 target stars, taken at the University Observatory Jena between March and September 2020 with the Echelle spectrograph FLECHAS, and within additional TRES-spectra from the Fred L. Whipple Observatory. The main part of this campaign with its 308 reduced spectra, accessible at VizieR, was already published. In this work, which is the continuation and completion of the in 2015 initiated observing campaign, we found three additional young runaway star candidates.
Young nearby runaway stars are suitable to search for their place of origin and possibly associated objects, for example neutron stars. Tetzlaff, Neuhauser & Hohle (2011) selected young ($le 50$ Myr) runaway star candidates from Hipparcos, for which
We produce a clean and well-characterised catalogue of objects within 100,pc of the Sun from the G Early Data Release 3. We characterise the catalogue through comparisons to the full data release, external catalogues, and simulations. We carry out a
CONTEXT.The first Gaia Data Release (DR1) significantly improved the previously available proper motions for the majority of the Tycho-2 stars. AIMS. We want to detect runaway stars using Gaia DR1 proper motions and compare our results with previous
We have performed Monte Carlo simulations of the trajectories of several runaway stars using their parallaxes and proper motions from the Gaia EDR3 catalogue. We have confirmed the hypothesis that the stars AE Aur and $mu$Col are a product of the mul
The ESA Gaia mission provides a unique time-domain survey for more than 1.6 billion sources with G ~ 21 mag. We showcase stellar variability across the Galactic colour-absolute magnitude diagram (CaMD), focusing on pulsating, eruptive, and cataclysmi