ﻻ يوجد ملخص باللغة العربية
Many newly discovered excited states are interpreted as bound states of hadrons. Can these hadrons also form resonant states? In this paper, we extend the complex scaling method (CSM) to calculate the bound state and resonant state consistently for the $Lambda_c D(bar D)$ and $Lambda_c Lambda_c (bar Lambda_c)$ systems. For these systems, the $pi, eta, rho$ meson exchange contributions are suppressed, the contributions of intermediate- and short-range forces from $sigma/omega$ exchange are dominant. Our results indicate that $Lambda_c D$ system can not form bound state and resonant state. There exist resonant states in a wide range of parameters for $Lambda_c bar D$ and $Lambda_c Lambda_c (bar Lambda_c)$ systems. For these systems, the larger bound state energy, the easier to form resonant states. Among all the resonant states, the energies and widths of the P wave resonant states are smaller and more stable, which is possible to be observed in the experiments. The energies of D and F wave resonant states can reach dozens of MeV and the widths can reach hundreds of MeV.
We study the resonance spectroscopy of the proton-rich nucleus 7B in the 4He+p+p+p cluster model. Many-body resonances are treated on the correct boundary condition as the Gamow states using the complex scaling method. We predict five resonances of 7
It is shown that the continuum level density (CLD) at unbound energies can be calculated with the complex scaling method (CSM), in which the energy spectra of bound states, resonances and continuum states are obtained in terms of $L^2$ basis function
The complex scaling method (CSM) is a useful similarity transformation of the Schrodinger equation, in which bound-state spectra are not changed but continuum spectra are separated into resonant and non-resonant continuum ones. Because the asymptotic
We examine the phenomenology of the production, at the 13 TeV Large Hadron Collider (LHC), of a heavy resonance $X$, which decays via other new on-shell particles $n$ into multi- (i.e. three or more) photon final states. In the limit that $n$ has a m
This paper explores the physics reach of the proton-proton Future Circular Collider (FCC-hh) and of the High-Energy LHC (HE-LHC) for searches of new particles produced in the $s$-channel and decaying to two high-energy leptons, jets (non-tops), tops