ﻻ يوجد ملخص باللغة العربية
The NEWS-G collaboration uses Spherical Proportional Counters (SPCs) to search for weakly interacting massive particles (WIMPs). In this paper, we report the first measurements of the nuclear quenching factor in neon gas at SI{2}{bar} using an SPC deployed in a neutron beam at the TUNL facility. The energy-dependence of the nuclear quenching factor is modelled using a simple power law: $alpha$E$_{nr}^{beta}$; we determine its parameters by simultaneously fitting the data collected with the detector over a range of energies. We measured the following parameters in Ne:CH$_{4}$ at SI{2}{bar}: $alpha$ = 0.2801 $pm$ 0.0050 (fit) $pm$ 0.0045 (sys) and $beta$ = 0.0867 $pm$ 0.020 (fit) $pm$ 0.006(sys). Our measurements do not agree with expected values from SRIM or Lindhard theory. We demonstrated the feasibility of performing quenching factor measurements at sub-keV energies in gases using SPCs and a neutron beam.
We have performed measurements of sodium nuclear recoils in NaI:Tl crystals, following scattering by neutrons produced in a $^{7}$Li(p,n)$^{7}$Be reaction. Understanding the light output from such recoils, which is reduced relative to electrons of eq
There is considerable experimental effort dedicated to the directional detection of particle dark matter. Gaseous mu-TPC detectors present the privileged features of being able to reconstruct the track and the energy of the recoil nucleus following t
We study the role of electron-electron correlation in the ground-state of Ne, as well as in photoionization dynamics induced by an attosecond XUV pulse. For a selection of central photon energies around 100 eV, we find that while the mean-field time-
Measurements of the quenching factor for sodium recoils in a 5 cm diameter NaI(Tl) crystal at room temperature have been made at a dedicated neutron facility at the University of Sheffield. The crystal has been exposed to 2.45 MeV mono-energetic neut
Scintillation crystals are commonly used for direct detection of weakly interacting massive particles (WIMPs), which are suitable candidates for a particle dark matter. It is well known that the scintillation light yields are different for electron r