ترغب بنشر مسار تعليمي؟ اضغط هنا

An Integrated Framework for the Heterogeneous Spatio-Spectral-Temporal Fusion of Remote Sensing Images

255   0   0.0 ( 0 )
 نشر من قبل Menghui Jiang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Image fusion technology is widely used to fuse the complementary information between multi-source remote sensing images. Inspired by the frontier of deep learning, this paper first proposes a heterogeneous-integrated framework based on a novel deep residual cycle GAN. The proposed network consists of a forward fusion part and a backward degeneration feedback part. The forward part generates the desired fusion result from the various observations; the backward degeneration feedback part considers the imaging degradation process and regenerates the observations inversely from the fusion result. The proposed network can effectively fuse not only the homogeneous but also the heterogeneous information. In addition, for the first time, a heterogeneous-integrated fusion framework is proposed to simultaneously merge the complementary heterogeneous spatial, spectral and temporal information of multi-source heterogeneous observations. The proposed heterogeneous-integrated framework also provides a uniform mode that can complete various fusion tasks, including heterogeneous spatio-spectral fusion, spatio-temporal fusion, and heterogeneous spatio-spectral-temporal fusion. Experiments are conducted for two challenging scenarios of land cover changes and thick cloud coverage. Images from many remote sensing satellites, including MODIS, Landsat-8, Sentinel-1, and Sentinel-2, are utilized in the experiments. Both qualitative and quantitative evaluations confirm the effectiveness of the proposed method.



قيم البحث

اقرأ أيضاً

Semantic segmentation of remote sensing images plays an important role in a wide range of applications including land resource management, biosphere monitoring and urban planning. Although the accuracy of semantic segmentation in remote sensing image s has been increased significantly by deep convolutional neural networks, several limitations exist in standard models. First, for encoder-decoder architectures such as U-Net, the utilization of multi-scale features causes the underuse of information, where low-level features and high-level features are concatenated directly without any refinement. Second, long-range dependencies of feature maps are insufficiently explored, resulting in sub-optimal feature representations associated with each semantic class. Third, even though the dot-product attention mechanism has been introduced and utilized in semantic segmentation to model long-range dependencies, the large time and space demands of attention impede the actual usage of attention in application scenarios with large-scale input. This paper proposed a Multi-Attention-Network (MANet) to address these issues by extracting contextual dependencies through multiple efficient attention modules. A novel attention mechanism of kernel attention with linear complexity is proposed to alleviate the large computational demand in attention. Based on kernel attention and channel attention, we integrate local feature maps extracted by ResNeXt-101 with their corresponding global dependencies and reweight interdependent channel maps adaptively. Numerical experiments on three large-scale fine resolution remote sensing images captured by different satellite sensors demonstrate the superior performance of the proposed MANet, outperforming the DeepLab V3+, PSPNet, FastFCN, DANet, OCRNet, and other benchmark approaches.
72 - Yuxing Chen 2021
Our planet is viewed by satellites through multiple sensors (e.g., multi-spectral, Lidar and SAR) and at different times. Multi-view observations bring us complementary information than the single one. Alternatively, there are common features shared between different views, such as geometry and semantics. Recently, contrastive learning methods have been proposed for the alignment of multi-view remote sensing images and improving the feature representation of single sensor images by modeling view-invariant factors. However, these methods are based on the pretraining of the predefined tasks or just focus on image-level classification. Moreover, these methods lack research on uncertainty estimation. In this work, a pixel-wise contrastive approach based on an unlabeled multi-view setting is proposed to overcome this limitation. This is achieved by the use of contrastive loss in the feature alignment and uniformity between multi-view images. In this approach, a pseudo-Siamese ResUnet is trained to learn a representation that aims to align features from the shifted positive pairs and uniform the induced distribution of the features on the hypersphere. The learned features of multi-view remote sensing images are evaluated on a liner protocol evaluation and an unsupervised change detection task. We analyze key properties of the approach that make it work, finding that the requirement of shift equivariance ensured the success of the proposed approach and the uncertainty estimation of representations leads to performance improvements. Moreover, the performance of multi-view contrastive learning is affected by the choice of different sensors. Results demonstrate both improvements in efficiency and accuracy over the state-of-the-art multi-view contrastive methods.
Archetypal scenarios for change detection generally consider two images acquired through sensors of the same modality. However, in some specific cases such as emergency situations, the only images available may be those acquired through sensors of di fferent modalities. This paper addresses the problem of unsupervisedly detecting changes between two observed images acquired by sensors of different modalities with possibly different resolutions. These sensor dissimilarities introduce additional issues in the context of operational change detection that are not addressed by most of the classical methods. This paper introduces a novel framework to effectively exploit the available information by modelling the two observed images as a sparse linear combination of atoms belonging to a pair of coupled overcomplete dictionaries learnt from each observed image. As they cover the same geographical location, codes are expected to be globally similar, except for possible changes in sparse spatial locations. Thus, the change detection task is envisioned through a dual code estimation which enforces spatial sparsity in the difference between the estimated codes associated with each image. This problem is formulated as an inverse problem which is iteratively solved using an efficient proximal alternating minimization algorithm accounting for nonsmooth and nonconvex functions. The proposed method is applied to real images with simulated yet realistic and real changes. A comparison with state-of-the-art change detection methods evidences the accuracy of the proposed strategy.
In the fields of image restoration and image fusion, model-driven methods and data-driven methods are the two representative frameworks. However, both approaches have their respective advantages and disadvantages. The model-driven methods consider th e imaging mechanism, which is deterministic and theoretically reasonable; however, they cannot easily model complicated nonlinear problems. The data-driven methods have a stronger prior knowledge learning capability for huge data, especially for nonlinear statistical features; however, the interpretability of the networks is poor, and they are over-dependent on training data. In this paper, we systematically investigate the coupling of model-driven and data-driven methods, which has rarely been considered in the remote sensing image restoration and fusion communities. We are the first to summarize the coupling approaches into the following three categories: 1) data-driven and model-driven cascading methods; 2) variational models with embedded learning; and 3) model-constrained network learning methods. The typical existing and potential coupling methods for remote sensing image restoration and fusion are introduced with application examples. This paper also gives some new insights into the potential future directions, in terms of both methods and applications.
Sea-land segmentation is an important process for many key applications in remote sensing. Proper operative sea-land segmentation for remote sensing images remains a challenging issue due to complex and diverse transition between sea and lands. Altho ugh several Convolutional Neural Networks (CNNs) have been developed for sea-land segmentation, the performance of these CNNs is far from the expected target. This paper presents a novel deep neural network structure for pixel-wise sea-land segmentation, a Residual Dense U-Net (RDU-Net), in complex and high-density remote sensing images. RDU-Net is a combination of both down-sampling and up-sampling paths to achieve satisfactory results. In each down- and up-sampling path, in addition to the convolution layers, several densely connected residual network blocks are proposed to systematically aggregate multi-scale contextual information. Each dense network block contains multilevel convolution layers, short-range connections and an identity mapping connection which facilitates features re-use in the network and makes full use of the hierarchical features from the original images. These proposed blocks have a certain number of connections that are designed with shorter distance backpropagation between the layers and can significantly improve segmentation results whilst minimizing computational costs. We have performed extensive experiments on two real datasets Google Earth and ISPRS and compare the proposed RDUNet against several variations of Dense Networks. The experimental results show that RDUNet outperforms the other state-of-the-art approaches on the sea-land segmentation tasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا