ترغب بنشر مسار تعليمي؟ اضغط هنا

Ozone formation in ternary collisions: Theory and experiment reconciled

129   0   0.0 ( 0 )
 نشر من قبل Marjan Mirahmadi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Marjan Mirahmadi




اسأل ChatGPT حول البحث

Absorbing UV radiation, ozone protects life on Earth and plays a fundamental role in Earths temperature balance. The formation of ozone occurs through the ternary recombination reaction: O$_2$+O+M $rightarrow$ O$_3$+M, where M can be N$_2$, O$_2$ or Ar. Here, we developed a theoretical approach capable of modeling the formation of ozone molecules in ternary collisions, and applied it to the reaction with M=Ar because of extensive experimental data available. The rate coefficients for the direct formation of O$_3$ in ternary collisions O+O$_2$+Ar were computed for the first time as a function of collision energy, and thermally-averaged coefficients were derived for temperatures 5-900~K leading to a good agreement with available experimental data for temperatures 100-900~K. The present study shows that the formation of ozone in ternary collisions O+O$_2$+Ar at temperatures below 200~K proceeds through a formation of a temporary complex ArO$_2$, while at temperatures above 1000~K, the reaction proceeds mainly through a formation of long-lived vibrational resonances of O$_3^*$. At intermediate temperatures 200~K-1000~K, the process cannot be viewed as a two-step mechanism. In addition, it is found that the majority of O$_3$ molecules formed initially are weakly bound.



قيم البحث

اقرأ أيضاً

The electronically excited states of methylene (CH$_2$), ethylene (C$_2$H$_4$), butadiene (C$_4$H$_6$), hexatriene (C$_6$H$_8$), and ozone (O$_3$) have long proven challenging due to their complex mixtures of static and dynamic correlations. Semistoc hastic heat-bath configuration interaction (SHCI), which efficiently and systematically approaches the full configuration interaction (FCI) limit, is used to provide close approximations to the FCI energies in these systems. This article presents the largest FCI-level calculation to date -- on hexatriene using a polarized double-zeta basis (ANO-L-pVDZ), which gives rise to a Hilbert space containing more than $10^{38}$ determinants. These calculations give vertical excitation energies of 5.58 and 5.59 eV respectively for the $2^1{rm A}_{rm g}$ and $1^1{rm B}_{rm u}$ states, showing that they are nearly degenerate. The same excitation energies in butadiene/ANO-L-pVDZ were found to be 6.58 and 6.45 eV. In addition to these benchmarks, our calculations strongly support the presence of a previously hypothesized ring-minimum species of ozone that lies 1.3 eV higher than the open-ring minimum energy structure and is separated from it by a barrier of 1.11 eV.
111 - Xiaojie Chen , Na Ying , Dean Chen 2021
Studies on stratospheric ozone have attracted much attention due to its serious impacts on climate changes and its important role as a tracer of Earths global circulation. Tropospheric ozone as a main atmospheric pollutant damages human health as wel l as the growth of vegetation. Yet there is still a lack of a theoretical framework to fully describe the variation of ozone. To understand ozones spatiotemporal variance, we introduce the eigen microstate method to analyze the global ozone mass mixing ratio (OMMR) between 1979-01-01 and 2020-06-30 at 37 pressure layers. We find that eigen microstates at different geopotential heights can capture different climate phenomena and modes. Without deseasonalization, the first eigen microstates capture the seasonal effect and reveal that the phase of the intra-annual cycle moves with the geopotential heights. After deseasonalization, by contrast, the collective patterns from the overall trend, ENSO, QBO, and tropopause pressure are identified by the first few significant eigen microstates. The theoretical framework proposed here can also be applied to other complex Earth systems.
Ozone in Earths atmosphere is known to have a radiative forcing effect on climate. Motivated by geochemical evidence for one or more nearby supernovae about 2.6 million years ago, we have investigated the question of whether a supernova at about 50 p c could cause a change in Earths climate through its impact on atmospheric ozone concentrations. We used the Planet Simulator (PlaSim) intermediate-complexity climate model with prescribed ozone profiles taken from existing atmospheric chemistry modeling. We found that the effect on globally averaged surface temperature is small, but localized changes are larger and differences in atmospheric circulation and precipitation patterns could have regional impacts.
We present a theoretical study of the Zeeman relaxation of the magnetically trappable lowest field seeking state of MnH(^7 Sigma) in collisions with 3He. We analyze the collisional Zeeman transition mechanism as a function of the final diatomic state and its variation as a function of an applied magnetic field. We show that as a result of this mechanism the levels with Delta Mj>2 give negligible contributions to the Zeemam relaxation cross section. We also compare our results to the experimental cross sections obtained from the buffer gas cooling and magnetic trapping of this molecule and investigate the dependence of the Zeeman relaxation cross section on the accuracy of the three body interaction at ultralow energies.
Based on cosmological rates, it is probable that at least once in the last Gy the Earth has been irradiated by a gamma-ray burst in our Galaxy from within 2 kpc. Using a two-dimensional atmospheric model we have performed the first computation of the effects upon the Earths atmosphere of one such impulsive event. A ten second burst delivering 100 kJ/m^2 to the Earth penetrates to the stratosphere and results in globally averaged ozone depletion of 35%, with depletion reaching 55% at some latitudes. Significant global depletion persists for over 5 years after the burst. This depletion would have dramatic implications for life since a 50% decrease in ozone column density results in approximately three times the normal UVB flux. Widespread extinctions are likely, based on extrapolation from UVB sensitivity of modern organisms. Additional effects include a shot of nitrate fertilizer and NO2 opacity in the visible providing a cooling perturbation to the climate over a similar timescale. These results lend support to the hypothesis that a GRB may have initiated the late Ordovician mass extinction (Melott et al. 2004).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا