ﻻ يوجد ملخص باللغة العربية
Text augmentation techniques are widely used in text classification problems to improve the performance of classifiers, especially in low-resource scenarios. Whilst lots of creative text augmentation methods have been designed, they augment the text in a non-selective manner, which means the less important or noisy words have the same chances to be augmented as the informative words, and thereby limits the performance of augmentation. In this work, we systematically summarize three kinds of role keywords, which have different functions for text classification, and design effective methods to extract them from the text. Based on these extracted role keywords, we propose STA (Selective Text Augmentation) to selectively augment the text, where the informative, class-indicating words are emphasized but the irrelevant or noisy words are diminished. Extensive experiments on four English and Chinese text classification benchmark datasets demonstrate that STA can substantially outperform the non-selective text augmentation methods.
Anonymous peer review is used by the great majority of computer science conferences. OpenReview is such a platform that aims to promote openness in peer review process. The paper, (meta) reviews, rebuttals, and final decisions are all released to pub
Numerous models for grounded language understanding have been recently proposed, including (i) generic models that can be easily adapted to any given task and (ii) intuitively appealing modular models that require background knowledge to be instantia
The subject of micro-variability among Mira stars has received increased attention since DeLaverny et al. (1998) reported short-term brightness variations in 15 percent of the 250 Mira or Long Period Variable stars surveyed using the broadband 340 to
As the success of deep models has led to their deployment in all areas of computer vision, it is increasingly important to understand how these representations work and what they are capturing. In this paper, we shed light on deep spatiotemporal repr
I revisit two theories of cell differentiation in multicellular organisms published a half-century ago, Stuart Kauffmans global gene regulatory dynamics (GGRD) model and Roy Brittens and Eric Davidsons modular gene regulatory network (MGRN) model, in