ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the time variation of fine structure constant using galaxy clusters and quintessence model

89   0   0.0 ( 0 )
 نشر من قبل Zhie Liu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore a possible time variation of the fine structure constant ($alpha equiv e^2/hbar c$) using the Sunyaev-Zeldovich effect measurements of galaxy clusters along with their X-ray observations. Specifically, the ratio of the integrated Compto-ionization parameter $Y_{SZ}D_A^2$ and its X-ray counterpart $Y_X$ is used as an observable to constrain the bounds on the variation of $alpha$. Considering the violation of cosmic distance duality relation, this ratio depends on the fine structure constant as $sim alpha^3$. We use the quintessence model to provide the origin of $alpha$ time variation. In order to give a robust test on $alpha$ variation, two galaxy cluster samples, the 61 clusters provided by the Planck collaboration and the 58 clusters detected by the South Pole Telescope, are collected for analysis. Their X-ray observations are given by the XMM-Newton survey. Our results give $zeta=-0.203^{+0.101}_{-0.099}$ for the Planck sample and $zeta=-0.043^{+0.165}_{-0.148}$ for the SPT sample, indicating that $alpha$ is constant with redshift within $3sigma$ and $1sigma$ for the two samples, respectively.



قيم البحث

اقرأ أيضاً

238 - Silvia Galli 2012
We propose a new method to probe for variations in the fine structure constant alpha using clusters of galaxies, opening up a window on a new redshift range for such constraints. Hot clusters shine in the X-ray mainly due to bremsstrahlung, while the y leave an imprint on the CMB frequency spectrum through the Sunyaev-Zeldovich effect. These two physical processes can be characterized by the integrated Comptonization parameter Y_SZ DA^2 and its X-ray counterpart, the Y_X parameter. The ratio of these two quantities is expected to be constant from numerical simulations and current observations. We show that this fact can be exploited to constrain alpha, as the ratio of the two parameters depends on the fine structure constant as alpha^{3.5}. We determine current constraints from a combination of Planck SZ and XMM-Newton data, testing different models of variation of alpha. When fitting for a constant value of alpha, we find that current constraints are at the 1% level, comparable with current CMB constraints. We discuss strategies for further improving these constraints by almost an order of magnitude.
In order to probe a possible time variation of the fine-structure constant ($alpha$), we propose a new method based on Strong Gravitational Lensing and Type Ia Supernovae observations. By considering a class of dilaton runaway models, where $frac{Del ta alpha}{alpha}= - gamma ln{(1+z)}$, we obtain constraints on $frac{Delta alpha}{alpha}$ at the level $gamma approx 10^{-2}$ ($gamma$ captures the physical properties of the model). Since the data set covers the redshift range $0.075 leq z leq 2.2649$, the constraints derived here provide independent bounds on a possible time variation of $alpha$ at low, intermediate and high redshifts.
We study a theory in which the electromagnetic field is disformally coupled to a scalar field, in addition to a usual non-minimal electromagnetic coupling. We show that disformal couplings modify the expression for the fine-structure constant, alpha. As a result, the theory we consider can explain the non-zero reported variation in the evolution of alpha by purely considering disformal couplings. We also find that if matter and photons are coupled in the same way to the scalar field, disformal couplings itself do not lead to a variation of the fine-structure constant. A number of scenarios are discussed consistent with the current astrophysical, geochemical, laboratory and the cosmic microwave background radiation constraints on the cosmological evolution of alpha. The models presented are also consistent with the current type Ia supernovae constraints on the effective dark energy equation of state. We find that the Oklo bound in particular puts strong constraints on the model parameters. From our numerical results, we find that the introduction of a non-minimal electromagnetic coupling enhances the cosmological variation in alpha. Better constrained data is expected to be reported by ALMA and with the forthcoming generation of high-resolution ultra-stable spectrographs such as PEPSI, ESPRESSO, and ELT-HIRES. Furthermore, an expected increase in the sensitivity of molecular and nuclear clocks will put a more stringent constraint on current laboratory measurements.
From the Sloan Digital Sky Survey (SDSS) Data Release 12, which covers the full Baryonic Oscillation Spectroscopic Survey (BOSS) footprint, we investigate the possible variation of the fine-structure constant over cosmological time-scales. We analyse the largest quasar sample considered so far in the literature, which contains 13175 spectra (10363 from SDSS-III/BOSS DR12 + 2812 from SDSS-II DR7) with redshift $z<,$1. We apply the emission-line method on the [O III] doublet (4960, 5008 A) and obtain $Deltaalpha/alpha= left(0.9 pm 1.8right)times10^{-5}$ for the relative variation of the fine-structure constant. We also investigate the possible sources of systematics: misidentification of the lines, sky OH lines, H$,beta$ and broad line contamination, Gaussian and Voigt fitting profiles, optimal wavelength range for the Gaussian fits, chosen polynomial order for the continuum spectrum, signal-to-noise ratio and good quality of the fits. The uncertainty of the measurement is dominated by the sky subtraction. The results presented in this work, being systematics limited, have sufficient statistics to constrain robustly the variation of the fine-structure constant in redshift bins ($Delta zapprox$ 0.06) over the last 7.9 Gyr. In addition, we study the [Ne III] doublet (3870, 3969 A) present in 462 quasar spectra and discuss the systematic effects on using these emission lines to constrain the fine-structure constant variation. Better constraints on $Deltaalpha/alpha $ ($<$10$^{-6}$) using the emission-line method would be possible with high-resolution spectroscopy and large galaxy/qso surveys.
The possibility of variation of the fundamental constants of nature has been a long-standing question, with important consequences for fundamental physics and cosmology. In particular, it has been shown that variations in the fine-structure constant, $alpha$, are directly related to violation of the distance duality relation (DDR), which holds true as long as photons travel on unique null geodesics and their number is conserved. In this paper we use the currently available measurements of ${Delta alpha}/{alpha}$ to impose the most stringent constraints on departures of the DDR to date, here quantified by the parameter $eta$. We also perform a forecast analysis to discuss the ability of the new generation of high-resolution spectrograph, like ESPRESSO/VLT and E-ELT-HIRES, to constrain the DDR parameter $eta$. From the current data we obtain constraints on $eta$ of the order of $10^{-7}$ whereas the forecasted constraints are two orders of magnitude lower. Considering the expected level of uncertainties of the upcoming measurements, we also estimate the necessary number of data points to confirm the hypotheses behind the DDR.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا