ﻻ يوجد ملخص باللغة العربية
The understanding of time expressions includes two sub-tasks: recognition and normalization. In recent years, significant progress has been made in the recognition of time expressions while research on normalization has lagged behind. Existing SOTA normalization methods highly rely on rules or grammars designed by experts, which limits their performance on emerging corpora, such as social media texts. In this paper, we model time expression normalization as a sequence of operations to construct the normalized temporal value, and we present a novel method called ARTime, which can automatically generate normalization rules from training data without expert interventions. Specifically, ARTime automatically captures possible operation sequences from annotated data and generates normalization rules on time expressions with common surface forms. The experimental results show that ARTime can significantly surpass SOTA methods on the Tweets benchmark, and achieves competitive results with existing expert-engineered rule methods on the TempEval-3 benchmark.
Yara rules are a ubiquitous tool among cybersecurity practitioners and analysts. Developing high-quality Yara rules to detect a malware family of interest can be labor- and time-intensive, even for expert users. Few tools exist and relatively little
Automatic question generation (QG) is a challenging problem in natural language understanding. QG systems are typically built assuming access to a large number of training instances where each instance is a question and its corresponding answer. For
Sequence-to-Sequence (S2S) neural text generation models, especially the pre-trained ones (e.g., BART and T5), have exhibited compelling performance on various natural language generation tasks. However, the black-box nature of these models limits th
Spoken dialogue systems that assist users to solve complex tasks such as movie ticket booking have become an emerging research topic in artificial intelligence and natural language processing areas. With a well-designed dialogue system as an intellig
We propose a new domain adaptation method for Combinatory Categorial Grammar (CCG) parsing, based on the idea of automatic generation of CCG corpora exploiting cheaper resources of dependency trees. Our solution is conceptually simple, and not relyin