ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum stability of Proca-Nuevo

57   0   0.0 ( 0 )
 نشر من قبل Lavinia Heisenberg
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The construction of general derivative self-interactions for a massive Proca field relies on the well-known condition for constrained systems of having a degenerate Hessian. The nature of the existing constraints algebra will distinguish among different classes of interactions. Proca-Nuevo interactions enjoy a non-trivial constraint by mixing terms of various order whereas Generalized Proca interactions satisfy the degeneracy condition order by order for each individual Lagrangians. In both cases the vector field propagates at most three degrees of freedom. It has been shown that the scattering amplitudes of Proca-Nuevo arising at the tree level always differ from those of the Generalized Proca, implying their genuinely different nature and a lack of relation by local field redefinitions. In this work, we show the quantum stability of the Proca-Nuevo theory below a specific UV cut-off. Although Proca-Nuevo and Generalized Proca are different inherently in their classical structure, both have the same high energy behaviour when quantum corrections are taken into account. The arising counter terms have the exact same structure and scaling. This might indicate that whatever UV completion they may come from, we expect it to be of similar nature.



قيم البحث

اقرأ أيضاً

As a modified gravity theory that introduces new gravitational degrees of freedom, the generalized SU(2) Proca theory (GSU2P for short) is the non-Abelian version of the well-known generalized Proca theory where the action is invariant under global t ransformations of the SU(2) group. This theory was formulated for the first time in Phys. Rev. D 94 (2016) 084041, having implemented the required primary constraint-enforcing relation to make the Lagrangian degenerate and remove one degree of freedom from the vector field in accordance with the irreducible representations of the Poincare group. It was later shown in Phys. Rev. D 101 (2020) 045008, ibid 045009, that a secondary constraint-enforcing relation, which trivializes for the generalized Proca theory but not for the SU(2) version, was needed to close the constraint algebra. It is the purpose of this paper to implement this secondary constraint-enforcing relation in GSU2P and to make the construction of the theory more transparent. Since several terms in the Lagrangian were dismissed in Phys. Rev. D 94 (2016) 084041 via their equivalence to other terms through total derivatives, not all of the latter satisfying the secondary constraint-enforcing relation, the work was not so simple as directly applying this relation to the resultant Lagrangian pieces of the old theory. Thus, we were motivated to reconstruct the theory from scratch. In the process, we found the beyond GSU2P.
This paper is concerned with the structural stability of spherical horizons. By this we mean stability with respect to variations of the second member of the corresponding differential equations, corresponding to the inclusion of the contribution of operators quadratic in curvature. This we do both in the usual second order approach (in which the independent variable is the spacetime metric) and in the first order one (where the independent variables are the spacetime metric and the connection field). In second order, it is claimed that the generic solution in the asymptotic regime (large radius) can be matched not only with the usual solutions with horizons (like Schwarzschild-de Sitter) but also with a more generic (in the sense that it depends on more arbitrary parameters) horizonless family of solutions. It is however remarkable that these horizonless solutions are absent in the {em restricted} (that is, when the background connection is the metric one) first order approach.
We consider the linear stability of $4$-dimensional hairy black holes with mixed boundary conditions in Anti-de Sitter spacetime. We focus on the mass of scalar fields around the maximally supersymmetric vacuum of the gauged $mathcal{N}=8$ supergravi ty in four dimensions, $m^{2}=-2l^{-2}$. It is shown that the Schr{o}dinger operator on the half-line, governing the $S^{2}$, $H^{2}$ or $mathbb{R}^{2}$ invariant mode around the hairy black hole, allows for non-trivial self-adjoint extensions and each of them correspons to a class of mixed boundary conditions in the gravitational theory. Discarding the self-adjoint extensions with a negative mode impose a restriction on these boundary conditions. The restriction is given in terms of an integral of the potential in the Schr{o}dinger operator resembling the estimate of Simon for Schr{o}dinger operators on the real line. In the context of AdS/CFT duality, our result has a natural interpretation in terms of the field theory dual effective potential.
402 - Benjamin Shlaer 2009
We demonstrate that possession of a single negative mode is not a sufficient criterion for an instanton to mediate exponential decay. For example, de Sitter space is generically stable against decay via the Coleman-De Luccia instanton. This is due to the fact that the de Sitter Euclidean action is bounded below, allowing for an approximately de Sitter invariant false vacuum to be constructed.
The stability of squashed Kaluza-Klein black holes is studied. The squashed Kaluza-Klein black hole looks like five dimensional black hole in the vicinity of horizon and four dimensional Minkowski spacetime with a circle at infinity. In this sense, s quashed Kaluza-Klein black holes can be regarded as black holes in the Kaluza-Klein spacetimes. Using the symmetry of squashed Kaluza-Klein black holes, $SU(2)times U(1)simeq U(2)$, we obtain master equations for a part of the metric perturbations relevant to the stability. The analysis based on the master equations gives a strong evidence for the stability of squashed Kaluza-Klein black holes. Hence, the squashed Kaluza-Klein black holes deserve to be taken seriously as realistic black holes in the Kaluza-Klein spacetime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا