ﻻ يوجد ملخص باللغة العربية
Embedding a monolayer of a transition metal dichalcogenide in a high-Q optical cavity results in the formation of distinct exciton polariton modes. The polaritons are affected by the strong exciton-phonon interaction in the monolayer. We use a time convolutionless master equation to calculate the phonon influence on the spectra of the polaritons. We discuss the non-trivial dependence of the line shapes of both branches on temperature and detuning. The peculiar polariton dispersion relation results in a linewidth of the lower polariton being largely independent of the coupling to acoustic phonons. For the upper polariton, acoustic phonons lead to a low-energy shoulder of the resonance in the linear response. Furthermore, we analyze the influence of inhomogeneous broadening being the dominant contribution to the lower polariton linewidth at low temperatures. Our results point towards interesting phonon features in polariton spectra in transition metal dichalcogenides.
Monolayers of transition metal dichalcogenides (TMDs) have been established in the last years as promising materials for novel optoelectronic devices. However, the performance of such devices is often limited by the dissociation of tightly bound exci
Localized excitons play a vital role in the optical response of monolayers of transition metal dichalcogenides and can be exploited as single photon sources for quantum information technology. While the optical properties of such localized excitons a
Excitons, composite electron-hole quasiparticles, are known to play an important role in optoelectronic phenomena in many semiconducting materials. Recent experiments and theory indicate that the band-gap optics of the newly discovered monolayer tran
Excitons dominate the optical properties of monolayer transition metal dichalcogenides (TMDs). Besides optically accessible bright exciton states, TMDs exhibit also a multitude of optically forbidden dark excitons. Here, we show that efficient excito
Due to the Coulomb interaction exciton eignestates in monolayer transitional metal dichalcogenides are coherent superposition of two valleys. The exciton band which couples to the transverse electric mode of light has parabolic dispersion for the cen