ترغب بنشر مسار تعليمي؟ اضغط هنا

Rigid folding equations of degree-6 origami vertices

133   0   0.0 ( 0 )
 نشر من قبل Thomas Hull
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Rigid origami, with applications ranging from nano-robots to unfolding solar sails in space, describes when a material is folded along straight crease line segments while keeping the regions between the creases planar. Prior work has found explicit equations for the folding angles of a flat-foldable degree-4 origami vertex. We extend this work to generalized symmetries of the degree-6 vertex where all sector angles equal $60^circ$. We enumerate the different viable rigid folding modes of these degree-6 crease patterns and then use $2^{nd}$-order Taylor expansions and prior rigid folding techniques to find algebraic folding angle relationships between the creases. This allows us to explicitly compute the configuration space of these degree-6 vertices, and in the process we uncover new explanations for the effectiveness of Weierstrass substitutions in modeling rigid origami. These results expand the toolbox of rigid origami mechanisms that engineers and materials scientists may use in origami-inspired designs.



قيم البحث

اقرأ أيضاً

We develop an intrinsic necessary and sufficient condition for single-vertex origami crease patterns to be able to fold rigidly. We classify such patterns in the case where the creases are pre-assigned to be mountains and valleys as well as in the un assigned case. We also illustrate the utility of this result by applying it to the new concept of minimal forcing sets for rigid origami models, which are the smallest collection of creases that, when folded, will force all the other creases to fold in a prescribed way.
In this paper, we will show methods to interpret some rigid origami with higher degree vertices as the limit case of structures with degree-4 supplementary angle vertices. The interpretation is based on separating each crease into two parallel crease s, or emph{double lines}, connected by additional structures at the vertex. We show that double-lin
We consider the zero-energy deformations of periodic origami sheets with generic crease patterns. Using a mapping from the linear folding motions of such sheets to force-bearing modes in conjunction with the Maxwell-Calladine index theorem we derive a relation between the number of linear folding motions and the number of rigid body modes that depends only on the average coordination number of the origamis vertices. This supports the recent result by Tachi which shows periodic origami sheets with triangular faces exhibit two-dimensional spaces of rigidly foldable cylindrical configurations. We also find, through analytical calculation and numerical simulation, branching of this configuration space from the flat state due to geometric compatibility constraints that prohibit finite Gaussian curvature. The same counting argument leads to pairing of spatially varying modes at opposite wavenumber in triangulated origami, preventing topological polarization but permitting a family of zero energy deformations in the bulk that may be used to reconfigure the origami sheet.
We study two types of discrete operations on Coulomb branches of $3d$ $mathcal{N}=4$ quiver gauge theories using both abelianisation and the monopole formula. We generalise previous work on discrete quotients of Coulomb branches and introduce novel w reathed quiver theories. We further study quiver folding which produces Coulomb branches of non-simply laced quivers.
We explore the surprisingly rich energy landscape of origami-like folding planar structures. We show that the configuration space of rigid-paneled degree-4 vertices, the simplest building blocks of such systems, consists of at least two distinct bran ches meeting at the flat state. This suggests that generic vertices are at least bistable, but we find that the nonlinear nature of these branches allows for vertices with as many as five distinct stable states. In vertices with collinear folds and/or symmetry, more branches emerge leading to up to six stable states. Finally, we introduce a procedure to tile arbitrary 4-vertices while preserving their stable states, thus allowing the design and creation of multistable origami metasheets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا