ترغب بنشر مسار تعليمي؟ اضغط هنا

Constriction of free Lie Rota-Baxter superalgebra via Gr{o}bner-Shirshov bases theory

66   0   0.0 ( 0 )
 نشر من قبل Jianjun Qiu
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we firstly construct free Lie $Omega$-superalgebras by the super-Lyndon-Shirshov $Omega$-monomials. Secondly, we establish Gr{o}bner-Shirshov bases theory for Lie $Omega$-superalgebras. Thirdly, as an application, we give a linear basis of a free Lie Rota-Baxter superalgebra on a $mathbb{Z}_2$-graded set.



قيم البحث

اقرأ أيضاً

In this paper, we obtain respectively some new linear bases of free unitary (modified) weighted differential algebras and free nonunitary (modified) Rota-Baxter algebras, in terms of the method of Gr{o}bner-Shirshov bases.
In this paper, we establish the Composition-Diamond lemma for associative algebras with multiple linear operators. As applications, we obtain Groebner-Shirshov bases of free Rota-Baxter algebra, $lambda$-differential algebra and $lambda$-differential Rota-Baxter algebra, respectively. In particular, linear bases of these three free algebras are respectively obtained, which are essentially the same or similar to those obtained by Ebrahimi-Fard and Guo, and Guo and Keigher recently by using other methods.
In this paper, we establish a local Lie theory for relative Rota-Baxter operators of weight $1$. First we recall the category of relative Rota-Baxter operators of weight $1$ on Lie algebras and construct a cohomology theory for them. We use the secon d cohomology group to study infinitesimal deformations of relative Rota-Baxter operators and modified $r$-matrices. Then we introduce a cohomology theory of relative Rota-Baxter operators on a Lie group. We construct the differentiation functor from the category of relative Rota-Baxter operators on Lie groups to that on Lie algebras, and extend it to the cohomology level by proving Van Est theorems between the two cohomology theories. Finally, we integrate a relative Rota-Baxter operator of weight 1 on a Lie algebra to a local relative Rota-Baxter operator on the corresponding Lie group, and show that the local integration and differentiation are adjoint to each other.
169 - L. A. Bokut , Yuqun Chen 2008
In this paper, we review Shirshovs method for free Lie algebras invented by him in 1962 which is now called the Groebner-Shirshov bases theory.
99 - Shuai Hou , Yunhe Sheng 2021
In this paper, first we introduce the notion of a twisted Rota-Baxter operator on a 3-Lie algebra $g$ with a representation on $V$. We show that a twisted Rota-Baxter operator induces a 3-Lie algebra structure on $V$, which represents on $g$. By this fact, we define the cohomology of a twisted Rota-Baxter operator and study infinitesimal deformations of a twisted Rota-Baxter operator using the second cohomology group. Then we introduce the notion of an NS-3-Lie algebra, which produces a 3-Lie algebra with a representation on itself. We show that a twisted Rota-Baxter operator induces an NS-3-Lie algebra naturally. Thus NS-3-Lie algebras can be viewed as the underlying algebraic structures of twisted Rota-Baxter operators on 3-Lie algebras. Finally we show that a Nijenhuis operator on a 3-Lie algebra gives rise to a representation of the deformed 3-Lie algebra and a 2-cocycle. Consequently, the identity map will be a twisted Rota-Baxter operator on the deformed 3-Lie algebra. We also introduce the notion of a Reynolds operator on a 3-Lie algebra, which can serve as a special case of twisted Rota-Baxter operators on 3-Lie algebras.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا