ترغب بنشر مسار تعليمي؟ اضغط هنا

NJOY+NCrystal: an open-source tool for creating thermal neutron scattering libraries

75   0   0.0 ( 0 )
 نشر من قبل Jose Ignacio Marquez Damian
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we present NJOY+NCrystal, a tool to generate thermal neutron scattering libraries with support for coherent and incoherent elastic components for crystalline solid materials. This tool, which is a customized version of NJOY, was created by modifying the nuclear data processing program NJOY to call the thermal scattering software library NCrystal, and includes a proposed change in the ENDF-6 format to store both the coherent and incoherent elastic components. Necessary changes to enable this format in NJOY, as well as to sample it in the OpenMC Monte Carlo code, are detailed here. Examples of materials that are coherent-dominant, incoherent-dominant, and mixed elastic scatterers are presented, as well as the creation of novel libraries for MgH$_2$ and MgD$_2$, that are under consideration as advanced neutron reflectors in the HighNESS project at the European Spallation Source. NJOY+NCrystal simplifies greatly the process to generate thermal scattering libraries (TSL) and this is exemplified with 213 new and updated TSL evaluations.

قيم البحث

اقرأ أيضاً

There is currently a big effort put into the operation and construction of world class neutron scattering facilities (SNS and SNS-TS2 in the US, J-PARC in Japan, ESS in Europe, CSS in China, PIK in Russia). On the other hand, there exists a network o f smaller neutron scattering facilities which play a key role in creating a large neutron scattering community who is able to efficiently use the existing facilities. With the foreseen closure of the ageing nuclear research reactors, especially in Europe there is a risk of seeing a shrinking of the community who would then be able to use efficiently the world class facilities. There is thus a reflection being conducted in several countries for the replacement of smaller research reactors with low energy accelerator based sources. We consider here a reference design for a compact neutron source based on existing accelerator components. We estimate the performances of various types of neutron scattering instruments built around such a source. The results suggest that nowadays state of the art neutron scattering experiments could be successfully performed on such a compact source and that it is thus a viable replacement solution for neutron research reactors.
We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical (AMO) physics experiments. The servo is capable of feedback bandwidths up to roughly 1~MHz (limited by the 320~ns total latency); l oop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of $^{27}$Al$^+$ in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.
We present characterization of a lock-in amplifier based on a field programmable gate array capable of demodulation at up to 50 MHz. The system exhibits 90 nV/sqrt(Hz) of input noise at an optimum demodulation frequency of 500 kHz.The passband has a full-width half-maximum of 2.6 kHz for modulation frequencies above 100 kHz. Our code is opensource and operates on a commercially available platform.
85 - T. Weber , R. Georgii , P. Boni 2019
Due to the instruments non-trivial resolution function, measurements on triple-axis spectrometers require extra care from the experimenter in order to obtain optimal results and to avoid unwanted spurious artefacts. We present a free and open-source software system that aims to ease many of the tasks encountered during the planning phase, in the execution and in data treatment of experiments performed on neutron triple-axis spectrometers. The software is currently in use and has been successfully tested at the MLZ, but can be configured to work with other triple-axis instruments and instrument control systems.
Developers must comprehend the code they will maintain, meaning that the code must be legible and reasonably self-descriptive. Unfortunately, there is still a lack of research and tooling that supports developers in understanding their naming practic es; whether the names they choose make sense, whether they are consistent, and whether they convey the information required of them. In this paper, we present IDEAL, a tool that will provide feedback to developers about their identifier naming practices. Among its planned features, it will support linguistic anti-pattern detection, which is what will be discussed in this paper. IDEAL is designed to, and will, be extended to cover further anti-patterns, naming structures, and practices in the near future. IDEAL is open-source and publicly available, with a demo video available at: https://youtu.be/fVoOYGe50zg
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا