ﻻ يوجد ملخص باللغة العربية
In many situations (e.g., distant supervision), unlabeled entity problem seriously degrades the performances of named entity recognition (NER) models. Recently, this issue has been well addressed by a notable approach based on negative sampling. In this work, we perform two studies along this direction. Firstly, we analyze why negative sampling succeeds both theoretically and empirically. Based on the observation that named entities are highly sparse in datasets, we show a theoretical guarantee that, for a long sentence, the probability of containing no unlabeled entities in sampled negatives is high. Missampling tests on synthetic datasets have verified our guarantee in practice. Secondly, to mine hard negatives and further reduce missampling rates, we propose a weighted and adaptive sampling distribution for negative sampling. Experiments on synthetic datasets and well-annotated datasets show that our method significantly improves negative sampling in robustness and effectiveness. We also have achieved new state-of-the-art results on real-world datasets.
In many scenarios, named entity recognition (NER) models severely suffer from unlabeled entity problem, where the entities of a sentence may not be fully annotated. Through empirical studies performed on synthetic datasets, we find two causes of perf
This paper presents a novel framework, MGNER, for Multi-Grained Named Entity Recognition where multiple entities or entity mentions in a sentence could be non-overlapping or totally nested. Different from traditional approaches regarding NER as a seq
Named entity recognition (NER) models are typically based on the architecture of Bi-directional LSTM (BiLSTM). The constraints of sequential nature and the modeling of single input prevent the full utilization of global information from larger scope,
Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of
It has been shown that named entity recognition (NER) could benefit from incorporating the long-distance structured information captured by dependency trees. We believe this is because both types of features - the contextual information captured by t