ترغب بنشر مسار تعليمي؟ اضغط هنا

$LnCu_3(OH)_6Cl_3 (Ln = Gd, Tb, Dy)$: Heavy Lanthanides on Spin-1/2 Kagome Magnets

149   0   0.0 ( 0 )
 نشر من قبل Le Wang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The spin-1/2 kagome antiferromagnets are key prototype materials for studying frustrated magnetism. Three isostructural kagome antiferromagnets LnCu$_3$(OH)$_6$Cl$_3$ (Ln = Gd, Tb, Dy) have been successfully synthesized by the hydrothermal method. LnCu$_3$(OH)$_6$Cl$_3$ adopts space group $Poverline{3}m1$ and features the layered Cu-kagome lattice with lanthanide Ln$^{3+}$ cations sitting at the center of the hexagons. Although heavy lanthanides (Ln = Gd, Tb, Dy) in LnCu$_3$(OH)$_6$Cl$_3$ provide a large effective magnetic moment and ferromagnetic-like spin correlations compared to light-lanthanides (Nd, Sm, Eu) analogues, Cu-kagome holds an antiferromagnetically ordered state at around 17 K like YCu$_3$(OH)$_6$Cl$_3$.

قيم البحث

اقرأ أيضاً

105 - P Mukherjee , Y Wu , G I Lampronti 2017
The lanthanide orthoborates, $Ln$BO$_3$, $Ln$ = Gd, Tb, Dy, Ho, Er, Yb crystallise in a monoclinic structure with the magnetic $Ln^{3+}$ forming an edge-sharing triangular lattice. The triangles are scalene, however all deviations from the ideal equi lateral geometry are less than 1.5%. The bulk magnetic properties are studied using magnetic susceptibility, specific heat and isothermal magnetisation measurements. Heat capacity measurements show ordering features at $T leq$ 2 K for $Ln$ = Gd, Tb, Dy, Er. No ordering is observed for YbBO$_3$ at $T geq$ 0.4 K and HoBO$_3$ is proposed to have a non-magnetic singlet state. Isothermal magnetisation measurements indicate isotropic Gd$^{3+}$ spins and strong single-ion anisotropy for the other $Ln^{3+}$. The change in magnetic entropy has been evaluated to determine the magnetocaloric effect in these materials. GdBO$_3$ and DyBO$_3$ are found to be competitive magnetocaloric materials in the liquid helium temperature regime.
We investigated the electronic structure of multiferroic hexagonal RMnO3 (R = Gd, Tb, Dy, and Ho) thin films using both optical spectroscopy and first-principles calculations. Using artificially stabilized hexagonal RMnO3, we extended the optical spe ctroscopic studies on the hexagonal multiferroic manganite system. We observed two optical transitions located near 1.7 eV and 2.3 eV, in addition to the predominant absorption above 5 eV. With the help of first-principles calculations, we attribute the low-lying optical absorption peaks to inter-site transitions from the oxygen states hybridized strongly with different Mn orbital symmetries to the Mn 3d3z2-r2 state. As the ionic radius of the rare earth ion increased, the lowest peak showed a systematic increase in its peak position. We explained this systematic change in terms of a flattening of the MnO5 triangular bipyramid.
We have succeeded in synthesizing single-phase polycrystalline samples of oxygen-deficient oxypnictide superconductors, LnFeAsO1-y (Ln: lanthanide elements) with Ln=La, Ce, Pr, Nd, Sm, Gd, Tb and Dy using high-pressure synthesis technique. It is foun d out that the synthesis pressure is the most important parameter for synthesizing single-phase samples, in particular for the heavier Ln?s, such as Tb and Dy. The lattice parameters systematically decrease with the atomic number of Ln, reflecting the shrinkage of Ln ionic radius. For the lighter Ln?s (La, Ce, Pr, Nd), Tc increases monotonously with decreasing the lattice parameters from 26K for Ln=La to 54K for Ln=Nd, then stays at the constant value around 53K for the heavier counterpart (Nd, Sm, Gd, Tb and Dy). The results suggest the intimate relationship between the crystal structural parameters and the superconductivity on the one hand, as well as the possible existence of the inherent maximum Tc on the other, which is located around 50 K in the LnFeAsO based materials.
A systematic study of the structural and magnetic properties of three-dimensionally frustrated lanthanide garnets $Ln_3A_2X_3text{O}_{12}$, $Ln$ = Gd, Tb, Dy, Ho, $A$ = Ga, Sc, In, Te, $X$ = Ga, Al, Li is presented. Garnets with $Ln$ = Gd show magnet ic behaviour consistent with isotropic Gd$^{3+}$ spins; no magnetic ordering is observed for T $geq$ 0.4 K. Magnetic ordering features are seen for garnets with $Ln$ = Tb, Dy, Ho in the temperature range 0.4 < T < 2.5 K, however the nature of the magnetic ordering varies for the different $Ln$ as well as for different combinations of $A$ and $X$. The changes in magnetic behaviour can be explained by tuning of the magnetic interactions and changes in the single-ion anisotropy. The change in magnetic entropy is evaluated from isothermal magnetisation measurements to characterise the magnetocaloric effect in these materials. Among the Gd garnets, the maximum change in magnetic entropy per mole (15.45 J K$^{-1}$ mol$_{text{Gd}}^{-1}$) is observed for Gd$_3$Sc$_2$Ga$_3$O$_{12}$ at 2 K, in a field of 9 T. The performance of Dy$_3$Ga$_5$O$_{12}$ as a magnetocaloric material surpasses the other garnets with $Ln$ = Tb, Dy, Ho.
We introduce $mathrm{Nd_{3}Sb_{3}Mg_{2}O_{14}}$ with ideal kagome lattices of neodymium ions in ABC stacking. Thermodynamic measurements show a Curie-Weiss temperature of $Theta_{CW}=-0.12~$K, a Nd$^{3+}$ spin-1/2 Kramers doublet ground state, and a second order phase transition at $T_N=0.56(2)~$K. Neutron scattering reveals non-coplanar scalar chiral ${bf k} =0$ magnetic order with a correlation length exceeding 400 AA = 55 $a$ and an ordered moment of $1.79(5)~mu_B$. This order includes a canted ferromagnetic component perpendicular to the kagome planes favored by Dzyaloshinskii-Moriya interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا