ﻻ يوجد ملخص باللغة العربية
Lubricants are widely used in macroscopic mechanical systems to reduce friction and wear. However, on the microscopic scale, it is not clear to what extent lubricants are beneficial. Therefore, in this study, we consider two diamond solid-state gears at the nanoscale immersed in different lubricant molecules and perform classical MD simulations to investigate the rotational transmission of motion. We find that lubricants can help to synchronize the rotational transmission between gears regardless of the molecular species and the center-of-mass distance. Moreover, the influence of the angular velocity of the driving gear is investigated and shown to be related to the bond formation process between gears.
The tribology of a bubble rubbing on a solid surface is studied via interferometry. A unique experimental setup is designed for monitoring the thickness profiles of a wetting film, intercalated between the bubble and hydrophilic glass moving with spe
Solid state qubits from paramagnetic point defects in solids are promising platforms to realize quantum networks and novel nanoscale sensors. Recent advances in materials engineering make possible to create proximate qubits in solids that might inter
The development of spin qubits for quantum technologies requires their protection from the main source of finite-temperature decoherence: atomic vibrations. Here we eliminate one of the main barriers to the progress in this field by providing a compl
We consider the nonlinear terahertz response of n-doped monolayer graphene at room temperature using a microscopic theory of carrier dynamics. Our tight-binding model treats the carrier-field interaction in the length gauge, includes phonon as well a
We demonstrate that efficient optical pumping of nuclear spins in semiconductor quantum dots (QDs) can be achieved by resonant pumping of optically forbidden transitions. This process corresponds to one-to-one conversion of a photon absorbed by the d