ترغب بنشر مسار تعليمي؟ اضغط هنا

Morphology of supernova remnants and their halos

119   0   0.0 ( 0 )
 نشر من قبل Robert Brose
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Supernova remnants (SNRs) are known to accelerate particles to relativistic energies, on account of their nonthermal emission. The observational progress from radio to gamma-ray observations reveals more and more morphological features that need to be accounted for when modeling the emission from those objects. We use our time-dependent acceleration code RATPaC to study the formation of extended gamma-ray halos around supernova remnants and the morphological implications that arise when the high-energetic particles start to escape from the SNRs. We performed spherically symmetric 1D simulations in which we simultaneously solved the transport equations for cosmic rays, magnetic turbulence, and the hydrodynamical flow of the thermal plasma. Our simulations span 25,000 years, thus covering the free-expansion and the Sedov-Taylor phase of the SNRs evolution. We find a strong difference in the morphology of the gamma-ray emission from SNRs at later stages dependent on the emission process. At early times, both the inverse-Compton and the Pion-decay morphology are shell-like. However, as soon as the maximum-energy of the freshly accelerated particles starts to fall, the inverse-Compton morphology starts to become center-filled, whereas the Pion-decay morphology keeps its shell-like structure. Escaping high-energy electrons start to form an emission halo around the SNR at this time. There are good prospects for detecting this spectrally hard emission with the future Cerenkov Telescope Array, as there are for detecting variations in the gamma-ray spectral index across the interior of the SNR. Further, we find a constantly decreasing nonthermal X-ray flux that makes a detection of X-ray unlikely after the first few thousand years of the SNRs evolution. The radio flux is increasing throughout the SNRs lifetime and changes from a shell-like to a more center-filled morphology later on.


قيم البحث

اقرأ أيضاً

The circumstellar medium (CSM) of a massive star is modified by its winds before a supernova (SN) explosion occurs, and thus the evolution of the resulting supernova remnant (SNR) is influenced by both the geometry of the explosion as well as the com plex structure of the CSM. Motivated by recent work suggesting the SNR W49B was a jet-driven SN expanding in a complex CSM, we explore how the dynamics and the metal distributions in a jet-driven explosion are modified by the interaction with the surrounding environment. In particular, we perform hydrodynamical calculations to study the dynamics and explosive nucleosynthesis of a jet-driven SN triggered by the collapse of a 25 solar masses Wolf-Rayet star and its subsequent interaction with the CSM up to several hundred years following the explosion. We find that although the CSM has small-scale effects on the structure of the SNR, the overall morphology and abundance patterns are reflective of the initial asymmetry of the SN explosion. Thus, we predict that jet-driven SNRs, such as W49B, should be identifiable based on morphology and abundance patterns at ages up to several hundred years, even if they expand into a complex CSM environment.
122 - Charee L. Peters 2013
Determination of the explosion type of supernova remnants (SNRs) can be challenging, as SNRs are hundreds to thousands of years old and supernovae (SNe) are classified based on spectral properties days after explosion. Previous studies of thermal X-r ay emission from Milky Way and Large Magellanic Cloud (LMC) SNRs have shown that Type Ia and core-collapse (CC) SNRs have statistically different symmetries, and thus these sources can be typed based on their X-ray morphologies. In this paper, we extend the same technique, a multipole expansion technique using power ratios, to infrared (IR) images of SNRs to test whether they can be typed using the symmetry of their warm dust emission as well. We analyzed archival Spitzer Space Telescope Multiband Imaging Photometer (MIPS) 24 micron observations of the previously used X-ray sample, and we find that the two classes of SNRs separate according to their IR morphologies. The Type Ia SNRs are statistically more circular and mirror symmetric than the CC SNRs, likely due to the different circumstellar environments and explosion geometries of the progenitors. Broadly, our work indicates that the IR emission retains information of the explosive origins of the SNR and offers a new method to type SNRs based on IR morphology.
Context. Central compact objects (CCOs) are a peculiar class of neutron stars, primarily encountered close to the center of young supernova remnants (SNRs) and characterized by thermal X-ray emission. Aims. Our goal is to perform a systematic study o f the proper motion of all known CCOs with appropriate data available. In addition, we aim to measure the expansion of three SNRs within our sample to obtain a direct handle on their kinematics and age. Methods. We analyze multiple archival Chandra data sets, consisting of HRC and ACIS observations separated by temporal baselines between 8 and 15 years. In order to correct for systematic astrometric uncertainties, we establish a reference frame using X-ray detected sources in Gaia DR2, to provide accurate proper motion estimates for our target CCOs. Complementarily, we use our coaligned data sets to trace the expansion of three SNRs by directly measuring the spatial offset of various filaments and ejecta clumps between different epochs. Results. In total, we present new proper motion measurements for six CCOs, among which we do not find any indication of a hypervelocity object. We tentatively identify direct signatures of expansion for the SNRs G15.9+0.2 and Kes 79, at estimated significance of $2.5sigma$ and $2sigma$, respectively. Moreover, we confirm recent results by Borkowski et al., measuring the rapid expansion of G350.1$-$0.3 at almost $6000,{rm km,s^{-1}}$, which places its maximal age at $600-700$ years. The observed expansion, combined with the rather small proper motion of its CCO, implies the need for a very inhomogeneous circumstellar medium to explain the highly asymmetric appearance of the SNR. Finally, for the SNR RX J1713.7$-$3946, we combine previously published expansion measurements with our measurement of the CCOs proper motion to obtain a constraining upper limit of $1700$ years on the systems age.
105 - Daichi Tsuna 2021
In a failed supernova, partial ejection of the progenitors outer envelope can occur due to weakening of the cores gravity by neutrino emission in the protoneutron star phase. We consider emission when this ejecta sweeps up the circumstellar material, analogous to supernova remnants (SNRs). We focus on failed explosions of blue supergiants, and find that the emission can be bright in soft X-rays. Due to its soft emission, we find that sources in the Large Magellanic Cloud (LMC) are more promising to detect than those in the Galactic disk. These remnants are characteristic in smallness ($lesssim 10$ pc) and slowness (100s of ${rm km s^{-1}}$) compared to typical SNRs. Although the expected number of detectable sources is small (up to a few by eROSITA 4-year all-sky survey), prospects are better for deeper surveys targeting the LMC. Detection of these failed SNRs will realize observational studies of mass ejection upon black hole formation.
109 - Laura A. Lopez 2018
We review the major advances in understanding the morphologies and kinematics of supernova remnants (SNRs). Simulations of SN explosions have improved dramatically over the last few years, and SNRs can be used to test models through comparison of pre dictions with SNRs observed large-scale compositional and morphological properties as well as the three-dimensional kinematics of ejecta material. In particular, Cassiopeia A -- the youngest known core-collapse SNR in the Milky Way -- offers an up-close view of the complexity of these explosive events that cannot be resolved in distant, extragalactic sources. We summarize the progress in tying SNRs to their progenitors explosions through imaging and spectroscopic observations, and we discuss exciting future prospects for SNR studies, such as X-ray microcalorimeters
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا