ﻻ يوجد ملخص باللغة العربية
Concurrent strategies based on event structures are examined from the viewpoint of may and must testing in traditional process calculi. In their pure form concurrent strategies fail to expose the deadlocks and divergences that can arise in their composition. This motivates an extension of the bicategory of concurrent strategies to treat the may and must behaviour of strategies under testing. One extension adjoins neutral moves to strategies but in so doing loses identities w.r.t. composition. This in turn motivates another extension in which concurrent strategies are accompanied by stopping configurations; the ensuing stopping strategies inherit the structure of a bicategory from that of strategies. The technical developments converge in providing characterisations of the may and must equivalences and preorders on strategies.
Concurrent Constraint Programming (CCP) is a declarative model for concurrency where agents interact by telling and asking constraints (pieces of information) in a shared store. Some previous works have developed (approximated) declarative debuggers
In this paper we introduce a typed, concurrent $lambda$-calculus with references featuring explicit substitutions for variables and references. Alongside usual safety properties, we recover strong normalization. The proof is based on a reducibility t
In asynchronous games, Melli{`e}s proved that innocent strategies are positional: their behaviour only depends on the position, not the temporal order used to reach it. This insightful result shaped our understanding of the link between dynamic (i.e.
Collective Adaptive Systems (CAS) consist of a large number of interacting objects. The design of such systems requires scalable analysis tools and methods, which have necessarily to rely on some form of approximation of the systems actual behaviour.
We study the reduction in a lambda-calculus derived from Moggis computational one, that we call the computational core. The reduction relation consists of rules obtained by orienting three monadic laws. Such laws, in particular associativity and iden