ﻻ يوجد ملخص باللغة العربية
The ability to accurately estimate job runtime properties allows a scheduler to effectively schedule jobs. State-of-the-art online cluster job schedulers use history-based learning, which uses past job execution information to estimate the runtime properties of newly arrived jobs. However, with fast-paced development in cluster technology (in both hardware and software) and changing user inputs, job runtime properties can change over time, which lead to inaccurate predictions. In this paper, we explore the potential and limitation of real-time learning of job runtime properties, by proactively sampling and scheduling a small fraction of the tasks of each job. Such a task-sampling-based approach exploits the similarity among runtime properties of the tasks of the same job and is inherently immune to changing job behavior. Our study focuses on two key questions in comparing task-sampling-based learning (learning in space) and history-based learning (learning in time): (1) Can learning in space be more accurate than learning in time? (2) If so, can delaying scheduling the remaining tasks of a job till the completion of sampled tasks be more than compensated by the improved accuracy and result in improved job performance? Our analytical and experimental analysis of 3 production traces with different skew and job distribution shows that learning in space can be substantially more accurate. Our simulation and testbed evaluation on Azure of the two learning approaches anchored in a generic job scheduler using 3 production cluster job traces shows that despite its online overhead, learning in space reduces the average Job Completion Time (JCT) by 1.28x, 1.56x, and 1.32x compared to the prior-art history-based predictor.
Coflow scheduling improves data-intensive application performance by improving their networking performance. State-of-the-art online coflow schedulers in essence approximate the classic Shortest-Job-First (SJF) scheduling by learning the coflow size
The ever-increasing gap between compute and I/O performance in HPC platforms, together with the development of novel NVMe storage devices (NVRAM), led to the emergence of the burst buffer concept - an intermediate persistent storage layer logically p
High-performance computing (HPC) is undergoing significant changes. Next generation HPC systems are equipped with diverse global and local resources, such as I/O burst buffer resources, memory resources (e.g., on-chip and off-chip RAM, external RAM/N
Cloud computing is a newly emerging distributed system which is evolved from Grid computing. Task scheduling is the core research of cloud computing which studies how to allocate the tasks among the physical nodes, so that the tasks can get a balance
In the past decade, we have witnessed a dramatically increasing volume of data collected from varied sources. The explosion of data has transformed the world as more information is available for collection and analysis than ever before. To maximize t