ﻻ يوجد ملخص باللغة العربية
We report on a quantum form of electronic flicker noise in nanoscale conductors that contains valuable information on quantum transport. This noise is experimentally identified in atomic and molecular junctions, and theoretically analyzed by considering quantum interference due to fluctuating scatterers. Using conductance, shot noise, and flicker noise measurements, we show that the revealed quantum flicker noise uniquely depends on the distribution of transmission channels, a key characteristic of quantum conductors. This dependence opens the door for the application of flicker noise as a diagnostic probe for fundamental properties of quantum conductors and many-body quantum effects, a role that up to now has been performed by the experimentally less-accessible shot noise.
Using the method developed in a recent paper (Euro. Phys. J. B 92.8 (2019): 1-28) we consider $1/f$ noise in two-dimensional electron gas (2DEG). The electron coherence length of the system is considered as a basic parameter for discretizing the spac
Fluctuations pose fundamental limitations in making sensitive measurements, yet at the same time, noise unravels properties that are inaccessible at the level of the averaged signal. In electronic devices, shot noise arises from the discrete nature o
We experimentally study the effect of different scattering potentials on the flicker noise observed in graphene devices on silica substrates. The noise in nominally identical devices is seen to behave in two distinct ways as a function of carrier con
Scattering of charge carriers and flicker noise in electrical transport are the central performance limiting factors in electronic devices, but their microscopic origin in molybdenum disulphide~(MoS$_2$)-based field effect transistors remains poorly
Low frequency noise close to the carrier remains little explored in spin torque nano oscillators. However, it is crucial to investigate as it limits the oscillators frequency stability. This work addresses the low offset frequency flicker noise of a