ترغب بنشر مسار تعليمي؟ اضغط هنا

SegMix: Co-occurrence Driven Mixup for Semantic Segmentation and Adversarial Robustness

111   0   0.0 ( 0 )
 نشر من قبل Md Amirul Islam
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we present a strategy for training convolutional neural networks to effectively resolve interference arising from competing hypotheses relating to inter-categorical information throughout the network. The premise is based on the notion of feature binding, which is defined as the process by which activations spread across space and layers in the network are successfully integrated to arrive at a correct inference decision. In our work, this is accomplished for the task of dense image labelling by blending images based on (i) categorical clustering or (ii) the co-occurrence likelihood of categories. We then train a feature binding network which simultaneously segments and separates the blended images. Subsequent feature denoising to suppress noisy activations reveals additional desirable properties and high degrees of successful predictions. Through this process, we reveal a general mechanism, distinct from any prior methods, for boosting the performance of the base segmentation and saliency network while simultaneously increasing robustness to adversarial attacks.



قيم البحث

اقرأ أيضاً

In this paper, we present a strategy for training convolutional neural networks to effectively resolve interference arising from competing hypotheses relating to inter-categorical information throughout the network. The premise is based on the notion of feature binding, which is defined as the process by which activations spread across space and layers in the network are successfully integrated to arrive at a correct inference decision. In our work, this is accomplished for the task of dense image labelling by blending images based on their class labels, and then training a feature binding network, which simultaneously segments and separates the blended images. Subsequent feature denoising to suppress noisy activations reveals additional desirable properties and high degrees of successful predictions. Through this process, we reveal a general mechanism, distinct from any prior methods, for boosting the performance of the base segmentation network while simultaneously increasing robustness to adversarial attacks.
Unsupervised domain adaptation (UDA) aims to adapt a model of the labeled source domain to an unlabeled target domain. Although the domain shifts may exist in various dimensions such as appearance, textures, etc, the contextual dependency, which is g enerally shared across different domains, is neglected by recent methods. In this paper, we utilize this important clue as explicit prior knowledge and propose end-to-end Context-Aware Mixup (CAMix) for domain adaptive semantic segmentation. Firstly, we design a contextual mask generation strategy by leveraging accumulated spatial distributions and contextual relationships. The generated contextual mask is critical in this work and will guide the domain mixup. In addition, we define the significance mask to indicate where the pixels are credible. To alleviate the over-alignment (e.g., early performance degradation), the source and target significance masks are mixed based on the contextual mask into the mixed significance mask, and we introduce a significance-reweighted consistency loss on it. Experimental results show that the proposed method outperforms the state-of-the-art methods by a large margin on two widely-used domain adaptation benchmarks, i.e., GTAV $rightarrow $ Cityscapes and SYNTHIA $rightarrow $ Cityscapes.
It has been well demonstrated that adversarial examples, i.e., natural images with visually imperceptible perturbations added, generally exist for deep networks to fail on image classification. In this paper, we extend adversarial examples to semanti c segmentation and object detection which are much more difficult. Our observation is that both segmentation and detection are based on classifying multiple targets on an image (e.g., the basic target is a pixel or a receptive field in segmentation, and an object proposal in detection), which inspires us to optimize a loss function over a set of pixels/proposals for generating adversarial perturbations. Based on this idea, we propose a novel algorithm named Dense Adversary Generation (DAG), which generates a large family of adversarial examples, and applies to a wide range of state-of-the-art deep networks for segmentation and detection. We also find that the adversarial perturbations can be transferred across networks with different training data, based on different architectures, and even for different recognition tasks. In particular, the transferability across networks with the same architecture is more significant than in other cases. Besides, summing up heterogeneous perturbations often leads to better transfer performance, which provides an effective method of black-box adversarial attack.
Adversarial training is promising for improving robustness of deep neural networks towards adversarial perturbations, especially on the classification task. The effect of this type of training on semantic segmentation, contrarily, just commences. We make the initial attempt to explore the defense strategy on semantic segmentation by formulating a general adversarial training procedure that can perform decently on both adversarial and clean samples. We propose a dynamic divide-and-conquer adversarial training (DDC-AT) strategy to enhance the defense effect, by setting additional branches in the target model during training, and dealing with pixels with diverse properties towards adversarial perturbation. Our dynamical division mechanism divides pixels into multiple branches automatically. Note all these additional branches can be abandoned during inference and thus leave no extra parameter and computation cost. Extensive experiments with various segmentation models are conducted on PASCAL VOC 2012 and Cityscapes datasets, in which DDC-AT yields satisfying performance under both white- and black-box attack.
99 - ZengShun Zhaoa 2021
While most existing segmentation methods usually combined the powerful feature extraction capabilities of CNNs with Conditional Random Fields (CRFs) post-processing, the result always limited by the fault of CRFs . Due to the notoriously slow calcula tion speeds and poor efficiency of CRFs, in recent years, CRFs post-processing has been gradually eliminated. In this paper, an improved Generative Adversarial Networks (GANs) for image semantic segmentation task (semantic segmentation by GANs, Seg-GAN) is proposed to facilitate further segmentation research. In addition, we introduce Convolutional CRFs (ConvCRFs) as an effective improvement solution for the image semantic segmentation task. Towards the goal of differentiating the segmentation results from the ground truth distribution and improving the details of the output images, the proposed discriminator network is specially designed in a full convolutional manner combined with cascaded ConvCRFs. Besides, the adversarial loss aggressively encourages the output image to be close to the distribution of the ground truth. Our method not only learns an end-to-end mapping from input image to corresponding output image, but also learns a loss function to train this mapping. The experiments show that our method achieves better performance than state-of-the-art methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا