ﻻ يوجد ملخص باللغة العربية
Every organism has a size that is convenient for its function. Not only multicellular organisms but also uni-cellular organisms and even subcellular structures have convenient sizes. Flagella of eukaryotic cells are long dynamic cell protrusions. Because of their simple linear geometry, these cell appendages have been popular system for experimental investigation of the mechanisms of size control of organelles of eukaryotic cells. In the past most of the attention have been focussed on mono-flagellates and bi-flagellates. By extending our earlier model of bi-flagellates, here we develop a theoretical model for flagellar length control in {it Giardia} which is an octo-flagellate. It has four pairs of flagella of four different lengths. Analyzing our model we predict the different sizes of the four pairs of flagella . This analysis not only provide insight into the physical origins of the different lengths but the predicted lengths are also consistent with the experimental data.
Flagella of eukaryotic cells are transient long cylindrical protrusions. The proteins needed to form and maintain flagella are synthesized in the cell body and transported to the distal tips. What `rulers or `timers a specific type of cells use to st
Organelles of optimum size are crucial for proper functioning of a living cell. The cell employs various mechanisms for actively sensing and controlling the size of its organelles. Recently Bauer et al have opened a new research frontier in the field
How does a cell self-organize so that its appendages attain specific lengths that are convenient for their respective functions? What kind of rulers does a cell use to measure the length of these appendages? How does a cell transport structure buildi
The flexibility of the bacterial flagellar hook is believed to have substantial consequences for microorganism locomotion. Using a simplified model of a rigid flagellum and a flexible hook, we show that the paths of axisymmetric cell bodies driven by
Groups of beating flagella or cilia often synchronize so that neighboring filaments have identical frequencies and phases. A prime example is provided by the unicellular biflagellate Chlamydomonas reinhardtii, which typically displays synchronous in-