ﻻ يوجد ملخص باللغة العربية
Wakes of aircraft and automobiles with relatively flat slanted aftbodies are often characterized by a streamwise-oriented vortex pair, whose strength affects drag and other crucial performance parameters. We examine the stability characteristics of the vortex pair emerging over an abstraction comprised of a streamwise-aligned cylinder terminated with an upswept plane. The Reynolds number is fixed at 5000 and the upsweep angle is increased from 20deg to 32deg. At 20deg, the LES yields a steady streamwise-oriented vortex pair, and the global modes are also stable. At 32deg, the LES displays unsteady flow behavior. Linear analysis of the mean flow reveals different unstable modes. The lowest oscillation frequency is an antisymmetric mode, which is attached to the entire slanted base. At the highest frequency, the mode is symmetric and has the same rotational orientation as the mean vortex pair. Its support is prominent in the rear part of the slanted base and spreads relatively rapidly downstream with prominent helical structures. A receptivity analysis of low- and high-frequency modes suggests the latter holds promise to affect the vortical flow, providing a potential starting point for a control strategy to modify the vortex pair.
We report the results of a complete modal and nonmodal linear stability analysis of the electrohydrodynamic flow (EHD) for the problem of electroconvection in the strong injection region. Convective cells are formed by Coulomb force in an insulating
We perform a three-dimensional, short-wavelength stability analysis on the numerically simulated two-dimensional flow past a circular cylinder for Reynolds numbers in the range $50le Rele300$; here, $Re = U_{infty}D/ u$ with $U_infty$, $D$ and $ u$ b
A rigorous derivation and validation for linear fluid-structure-interaction (FSI) equations for a rigid-body-motion problem is performed in an Eulerian framework. We show that the added-stiffness terms arising in the formulation of Fanion et al. (200
In this article we consider the linear stability of the two-dimensional flow induced by the linear stretching of a surface in the streamwise direction. The basic flow is a rare example of an exact analytical solution of the Navier-Stokes equations. U
Modeling realistic fluid and plasma flows is computationally intensive, motivating the use of reduced-order models for a variety of scientific and engineering tasks. However, it is challenging to characterize, much less guarantee, the global stabilit